Virtuelle FC-Adapter und NPIV

Physical FC port with Virtual FC and NPIV

Eine Möglichkeit für die Virtualisierung von Storage unter PowerVM ist die Verwendung von virtuellen FC Adaptern. Dabei ist ein virtueller FC-Client Adapter über den POWER Hypervisor mit einem virtuellen FC-Server Adapter auf einem Virtual-I/O-Server verbunden, wie in Bild 7.10 gezeigt. Auf dem Virtual-I/O-Server wird der virtuelle FC-Server Adapter dann mit einem der physikalischen FC-Ports verbunden (Mapping). Jeder der verbundenen virtuellen FC-Server Adapter kann dabei einen eigenen Login in die FC-Fabric durchführen. Jeder virtuelle FC-Server Adapter bekommt dabei eine eigene 24-bit FC-Adresse zugewiesen.

Communication path of the virtual FC client adapter to the SAN LUN.
Bild 7.10: Kommunikationspfad virtueller FC Client Adapter zur SAN-LUN.

Der Vorteil von Virtual FC besteht darin, das jeder virtuelle FC-Client Adapter einen eigenen N_Port besitzt und damit direkt mit dem Storage in der FC-Fabric kommunizieren kann. Die Storage-LUNs können dem virtuellen FC -Client Adapter direkt zugewiesen. Der Virtual-I/O-Server selbst sieht normalerweise die Storage-LUNs der virtuellen FC Clients nicht. Das macht die Administration deutlicher einfacher als bei virtuellem SCSI, wo jede Storage-LUN auf dem Virtual-I/O-Server auf einen virtuellen SCSI Server Adapter gemappt werden muss (siehe nächstes Kapitel).

Bevor ein virtueller FC Adapter angelegt und gemappt wird, sieht die Situation auf einem Virtual-I/O-Server so wie in Bild 7.11 dargestellt aus. Der physikalische FC-Port ist an eine FC-Fabric angeschlossen und konfiguriert daher einen N_Port. Der physikalische FC-Port loggt sich in die Fabric ein (FLOGI) und bekommt die eindeutige N_Port ID 8c8240 zugewiesen. Danach registriert der FC-Port seine WWPN (hier 10:00:00:10:9b:ab:01:02) beim Simple Name Server (SNS) der Fabric (PLOGI). Danach kann der Virtual-I/O-Server über das Gerät fcs0 mit anderen N_Ports in der Fabric kommunizieren.

Physical FC port without virtual FC and NPIV
Bild 7.11: Physikalischer FC-Port ohne Virtual FC und NPIV

N_Port-ID Virtualisierung oder kurz NPIV ist eine Erweiterung des FC-Standards und erlaubt das sich über einen physikalischen FC-Port mehr als ein N_Port in die Fabric einloggen kann. Im Prinzip gab es diese Möglichkeit schon immer, allerdings nur im Zusammenhang mit FC Arbitrated Loop (FC-AL) und Fabrics. Mit NPIV können mehrere Client LPARs einen physikalischen FC-Port gemeinsam verwenden. Jeder Client hat dabei seinen eigenen eindeutigen N_Port.

In Bild 7.12 ist die Situation mit 2 virtuellen FC-Client Adaptern gezeigt. Jeder der Client Adapter hat eine eindeutige WWPN. Diese wird von PowerVM beim Erzeugen des virtuellen FC-Client Adapters zugewiesen (um Live-Partition Mobility unterstützen zu können, werden immer 2 WWPNs zugewiesen, wobei nur eine der beiden WWPNs aktiv ist). Jeder virtuelle FC-Client Adapter benötigt auf einem Virtual-I/O-Server einen Partner Adapter, den virtuellen FC-Server Adapter (oder auch vfchost). Dem virtuellen FC-Server Adapter muß auf dem Virtual-I/O-Server einer der physikalischen FC-Ports zugeordnet werden. Ist die Client-LPAR aktiv, dann loggt sich der virtuelle FC-Server Adapter in die Fabric ein (FDISC) und bekommt eine eindeutige N_Port ID zugewiesen. Im Bild ist das für den blauen Adapter die 8c8268 und für den roten Adapter die 8c8262. Danach registriert der blaue Adapter seine Client-WWPN (hier c0:50:76:07:12:cd:00:16) beim Simple Name Server (SNS) der Fabric (PLOGI). Das gleiche macht der rote Adapter für seine Client-WWPN (hier c0:50:76:07:12:cd:00:09). Damit haben dann beide virtuellen FC-Client Adapter jeweils einen N_Port mit einer eindeutigen 24-bit ID und können damit mit anderen N_Ports in der Fabric kommunizieren.

Physical FC port with Virtual FC and NPIV
Bild 7.12: Physikalischer FC-Port mit Virtual FC und NPIV

Die zu Daten werden natürlich zwischen virtuellem FC-Client Adapter und virtuellem FC-Server Adapter nicht vom Hypervisor kopiert, das würde zuviel Performance kosten. Der Hypervisor gibt lediglich die physikalische Speicheradresse weiter, an der die Daten stehen und der physikalische FC-Port verwendet dann DMA (Direct Memory Access) um auf diese Daten dann zuzugreifen.

LPAR-Tool 1.6.0.0 ist verfügbar

Ab sofort ist unser LPAR-Tool in der Version 1.6.0.0 in unserem Download-Bereich verfügbar!

Neue Feature sind:

  • Online Überwachung von SEA Client Statistiken (vios help seastat)
  • Online Überwachung von virtuellen FC Client Adaptern (vios help fcstat)
  • Anzeige historischer Prozessor und Memory Daten (lpar help lsmem, lpar help lsproc)

Im Artikel Überwachung des SEA Netzwerk-Verkehrs werden die Möglichkeiten SEA Client Statistiken abzurufen gezeigt.

Die Auswirkungen von FC-Ports ohne Link

FC-Ports die nicht verwendet werden und keinen Link haben, sollten deaktiviert werden, da diese die Laufzeit einer Reihe von Kommandos und Operationen (z.B. LPM) deutlich verlängern.

(Hinweis: in einigen Beispielen wird unser LPAR-Tool verwendet, es werden aber auch immer die Kommandos auf der HMC, oder dem Virtual-I/O-Server gezeigt!)

Auf einem unserer Virtual-I/O-Server (ms26-vio1) sind 2 4-Port FC Adapter in Verwendung:

$ lpar lsslot ms26-vio1
DRC_NAME                  DRC_INDEX  IOPOOL  DESCRIPTION
U78D3.001.XXXXXXX-P1-C49  21040015   none    PCIe3 x8 SAS RAID Internal Adapter 6Gb
U78D3.001.XXXXXXX-P1-C7   2103001C   none    PCIe3 4-Port 16Gb FC Adapter
U78D3.001.XXXXXXX-P1-C2   21010021   none    PCIe3 4-Port 16Gb FC Adapter
$
(HMC: lshwres -r io --rsubtype slot -m ms26 --filter lpar_names=ms26-vio1)

Es sind allerdings nur 2 Ports verkabelt:

$ vios lsnports ms26-vio1
NAME  PHYSLOC                     FABRIC  TPORTS  APORTS  SWWPNS  AWWPNS
fcs0  U78D3.001.XXXXXXX-P1-C2-T1  1       64      64      3072    3072
fcs4  U78D3.001.XXXXXXX-P1-C7-T1  1       64      64      3072    3072
$
(VIOS: lsnports)

Beim Arbeiten mit dem Virtual-I/O-Server fällt auf, das einige der Kommandos eine unerwartet lange Laufzeit haben und teilweise für längere Zeit hängen. Im Folgenden sind einige Kommandos angegeben, zusammen mit der benötigten Laufzeit:

(0)padmin@ms26-vio1:/home/padmin> time netstat –cdlistats
…
Error opening device: /dev/fscsi1
errno: 00000045

Error opening device: /dev/fscsi2
errno: 00000045

Error opening device: /dev/fscsi3
errno: 00000045

Error opening device: /dev/fscsi5
errno: 00000045

Error opening device: /dev/fscsi6
errno: 00000045

Error opening device: /dev/fscsi7
errno: 00000045

real    1m13.56s
user    0m0.03s
sys     0m0.10s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time lsnports
name             physloc                        fabric tports aports swwpns  awwpns
fcs0             U78D3.001.XXXXXXX-P1-C2-T1          1     64     64   3072    3072
fcs4             U78D3.001.XXXXXXX-P1-C7-T1          1     64     64   3072    3072

real    0m11.61s
user    0m0.01s
sys     0m0.00s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time fcstat fcs1

Error opening device: /dev/fscsi1
errno: 00000045

real    0m11.31s
user    0m0.01s
sys     0m0.01s
(4)padmin@ms26-vio1:/home/padmin>

Auch LPM-Operationen dauern deutlich länger, da bei der Suche nach passenden FC-Ports für die nötigen NPIV-Mappings alle FC-Ports untersucht werden. Dies kann zu Verzögerungen im Minuten-Bereich führen, bevor die Migration dann letztlich gestartet wird.

Um diese unnötig langen Laufzeiten zu vermeiden, sollten nicht verkabelte FC-Ports nicht aktiviert werden. Das fscsi-Device besitzt das Attribut autoconfig mit den möglichen Werten defined und available. Per Default wird der Wert available verwendet, was dazu führt das der Kernel das Device konfiguriert und aktiviert, auch wenn es keinen Link besitzt, was zu den oben gezeigten Wartezeiten führt. Setzt man das Attribut autoconfig auf defined, dann wird das fscsi-Device nicht aktiviert, es bleibt dann im Zustand defined.

Im folgenden Beispiel wird gezeigt, wie man das Device fscsi1 umkonfiguriert:

$ vios chdev ms26-vio1 fscsi1 autoconfig=defined
$
(VIOS: chdev -dev fscsi1 -attr autoconfig=defined)
$
$ vios rmdev ms26-vio1 fscsi1
$
(VIOS: rmdev -dev fscsi1 –ucfg)
$
$ vios lsdev ms26-vio1 fscsi1
NAME    STATUS   PHYSLOC                     PARENT  DESCRIPTION
fscsi1  Defined  U78D3.001.XXXXXXX-P1-C2-T2  fcs1    FC SCSI I/O Controller Protocol Device
$
(VIOS: lsdev -dev fscsi1)
$
$  vios lsattr ms26-vio1 fscsi1
ATTRIBUTE     VALUE      DESCRIPTION                            USER_SETTABLE
attach        none       How this adapter is CONNECTED          False
autoconfig    defined    Configuration State                    True
dyntrk        yes        Dynamic Tracking of FC Devices         True+
fc_err_recov  fast_fail  FC Fabric Event Error RECOVERY Policy  True+
scsi_id       Adapter    SCSI ID                                False
sw_fc_class   3          FC Class for Fabric                    True
$
(VIOS: lsdev -dev fscsi1 –attr)
$

Durch das Attribut autoconfig=defined bleibt das fscsi-Device auch bei einem Lauf des cfgmgr auf defined!

Wiederholt man die Laufzeit-Messung der Kommandos oben, sieht man das die Laufzeit der Kommandos sich schon meßbar verbessert hat:

(0)padmin@ms26-vio1:/home/padmin> time netstat –cdlistats
…
Error opening device: /dev/fscsi1
errno: 00000005

Error opening device: /dev/fscsi2
errno: 00000045

Error opening device: /dev/fscsi3
errno: 00000045

Error opening device: /dev/fscsi5
errno: 00000045

Error opening device: /dev/fscsi6
errno: 00000045

Error opening device: /dev/fscsi7
errno: 00000045

real    1m1.02s
user    0m0.04s
sys     0m0.10s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time lsnports
name             physloc                        fabric tports aports swwpns  awwpns
fcs0             U78D3.001.XXXXXXX-P1-C2-T1          1     64     64   3072    3072
fcs4             U78D3.001.XXXXXXX-P1-C7-T1          1     64     64   3072    3072

real    0m9.70s
user    0m0.00s
sys     0m0.01s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time fcstat fcs1

Error opening device: /dev/fscsi1
errno: 00000005

real    0m0.00s
user    0m0.02s
sys     0m0.00s
(4)padmin@ms26-vio1:/home/padmin>

Die Laufzeit des netstat-Kommandos hat sich um 12 Sekunden verkürzt, das Komnando lsnports war ca 2 Sekunden schneller.

Wir setzen das autoconfig Attribut jetzt auch bei allen anderen unbenutzten FC-Ports auf defined:

$ for fscsi in fscsi2 fscsi3 fscsi5 fscsi6 fscsi7
> do
> vios chdev ms26-vio1 $fscsi autoconfig=defined
> vios rmdev ms26-vio1 $fscsi
> done
$

Jetzt wiederholen wir die Laufzeit-Messung der Kommandos erneut:

(0)padmin@ms26-vio1:/home/padmin> time netstat –cdlistats
…
Error opening device: /dev/fscsi1
errno: 00000005

Error opening device: /dev/fscsi2
errno: 00000005

Error opening device: /dev/fscsi3
errno: 00000005

Error opening device: /dev/fscsi5
errno: 00000005

Error opening device: /dev/fscsi6
errno: 00000005

Error opening device: /dev/fscsi7
errno: 00000005

real    0m0.81s
user    0m0.03s
sys     0m0.10s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time lsnports         
name             physloc                        fabric tports aports swwpns  awwpns
fcs0             U78D3.001.XXXXXXX-P1-C2-T1          1     64     64   3072    3072
fcs4             U78D3.001.XXXXXXX-P1-C7-T1          1     64     64   3072    3072

real    0m0.00s
user    0m0.01s
sys     0m0.01s
(0)padmin@ms26-vio1:/home/padmin> time fcstat fcs1       

Error opening device: /dev/fscsi1
errno: 00000005

real    0m0.04s
user    0m0.00s
sys     0m0.00s
(4)padmin@ms26-vio1:/home/padmin>

Das Kommando netstat benötigt nun weniger als 1 Sekunde, das Kommando lsnports nur noch 0.1 Sekunden.

Es lohnt sich also das autoconfig Attribut für nicht-benutzte FC-Ports auf defined zu setzen!

 

FC NPIV Client Durchsatz-Statistiken

Bei Verwendung von NPIV teilen sich mehrere Client-LPARs einen physikalischen FC-Port eines Virtual-I/O-Servers. Für Performance-Untersuchungen wäre es natürlich schön, wenn man den Durchsatz der einzelnen Client-LPARs leicht feststellen könnte um diese vergleichend anzuschauen. Damit könnten Fragen wie

  • wieviel Durchsatz erzielt eine bestimmte LPAR gerade
  • welche LPARs haben den höchsten Durchsatz und produzieren den meisten FC-Verkehr
  • treten Resource-Engpässe auf

beantwortet werden.

Es gibt natürlich verschiedene Möglichkeiten diese Daten zu gewinnen. Eine besonders einfache Möglichkeit stellt der Virtual-I/O-Server über das padmin Kommando ‚fcstat‚ bereit. Das Kommando erlaubt die Ausgabe von NPIV-Client-Statistiken bei Verwendung der Option ‚-client‚:

(0)padmin@aixvio1:/home/padmin> fcstat -client
              hostname   dev                wwpn     inreqs    outreqs ctrlreqs          inbytes         outbytes  DMA_errs Elem_errs Comm_errs

               aixvio1  fcs0  0x100000XXXXXXXXXX 49467894179 50422150679 947794529 1861712755360927 1451335312750576         0         0         0
     C050760YYYYYYYYY
                                    0          0        0                0                0         0         0         0
     C050760ZZZZZZZZZ
                                    0          0        0                0                0         0         0         0
                 aix01  fcs0  0xC050760XXXXXXXXX   22685402  101956075 10065757     699512617896    1572578056704         0         0         0
                 aix02  fcs0  0xC050760XXXXXXXXX   28200473   82295158 12051365     387847746448     626772151808         0         0         0
                 aix03  fcs0  0xC050760XXXXXXXXX  376500672  255163053 21583628   22619424512608    3786990844928         0         0         0
                 aix04  fcs0  0xC050760XXXXXXXXX  116450405  504688524 14020031    4037786527400    9929289617408         0         0         0
          blbprodora22  fcs0  0xC050760XXXXXXXXX 1341092479  580673554 37458927   44288566807072   12166718497792         0         0         0
...
               aixvio1  fcs1  0x100000XXXXXXXXXX  391131484 1090556094 156294130   71031615240217   87642294572864         0         0         0
              aixtsm01  fcs2  0xC050760XXXXXXXXX  334020900  785597352 74659821   62072552942128   83284555980288         0         0         0
              aixtsm02  fcs0  0xC050760XXXXXXXXX    2943054   40921231 11617552     107317697968     289142333440         0         0         0

               aixvio1  fcs2  0x210000XXXXXXXXXX  403180246 5877180796   236998  105482699300998 1540608710446612         0         0         0
              aixtsm01  fcs6  0xC050760XXXXXXXXX  146492419  392365162    74250   38378099796342  102844775468007         0         0         0
              aixtsm02  fcs2  0xC050760XXXXXXXXX         19     192848       20             1090      50551063184         0         0         0

               aixvio1  fcs3  0x210000XXXXXXXXXX  405673338 7371951499   260575  105969796271246 1932388891128304         0         0         0
              aixtsm02  fcs3  0xC050760XXXXXXXXX          0          0        4                0                0         0         0         0
                 aix02  fcs7  0xC050760XXXXXXXXX      42624 2677470211    34211          2382280  701864613402184         0         0         0
...
Invalid initiator world wide name
Invalid initiator world wide name
(0)padmin@aixvio1:/home/padmin>

Die Zeile mit der WWPN C050760YYYYYYYYY und C050760ZZZZZZZZZ gehören zu NPIV-Adaptern von nicht aktivierten LPARs. Daher werden als Zähler auch nur Nullen angezeigt. Für jeden physikalischen (NPIV-fähigen) FC-Port des Virtual-I/O-Servers wird der physikalische FC-Port, sowie die NPIV Client-LPARs angezeigt. Anhand des fett-markierten Blocks soll hier kurz die Ausgabe beschrieben werden. Als erstes wird immer der physikalische Port des Virtual-I/O-Servers ausgegeben, hier aixvio1 und FC-Port fcs1. In den darauffolgenden Zeilen kommen dann die NPIV-Clients, jeweils mit dem LPAR-Namen und dem zugehörigen virtuellen FC-Port der LPAR, hier aixtsm01 und aixtsm02. Die virtuellen FC-Ports der LPARs fcs2 (aixtsm01) und fcs0 (aixtsm02) sind auf den physikalischen FC-Port fcs1 von aixvio1 gemappt. Nach einer Leerzeile kommt der nächste physikalische FC-Port des Virtual-I/O-Servers.

In den Spalten werden die WWPN der physikalischen bzw. virtuellen FC-Ports augelistet. Außerdem werden die Anzahl der Ein- und Ausgehenden Requests, sowie die übertragenen Bytes, ebenfalls ein- und ausgehend, aufgelistet. In den 3 verbleibenden Spalten werden Fehler aufgeführt. Gibt es für einen Request keinen DMA Puffer mehr, wird DMA_errs hochgezählt, ist die Queue des FC-Adapters voll, wird Elem_errs hochgezählt, bei Übertragungs-Fehlern wird Comm_errs hochgezählt. Tauchen regelmäßig Zähler bei DMA_errs oder Elem_errs auf, kann das ein Hinweis auf zu kleine Werte bei einigen Tuning-Attributen sein.

Aufgrund der Länge der Ausgabe und den absoluten Zählern die ausgegeben werden, ist die Ausgabe etwas unübersichtlich. Mit einem kleinen Skript kann man aber leicht Delta-Werte errechnen und die Ausgabe auf MB pro Sekunde skalieren. Mit dem nachfolgenden Beispiel-Skript haben wir dies getan:

$ cat npivstat
#! /bin/ksh93
#
# Copyright (c) 2019 by PowerCampus 01 GmbH
# Author: Dr. Armin Schmidt
#

delta=5 # seconds

typeset -A dataInreqs
typeset -A dataOutreqs
typeset -A dataInbytes
typeset -A dataOutbytes
typeset -A dataDMA_errs
typeset -A dataElem_errs
typeset -A dataComm_errs

bc |& # start bc as coroutine
print -p "scale=2"

# get first sample

/usr/ios/cli/ioscli fcstat -client 2>/dev/null | \
while read hostname dev wwpn inreqs outreqs ctrlreqs inbytes outbytes DMA_errs Elem_errs Comm_errs rest
do
case "$wwpn" in
0x*)
dataInreqs[${hostname}_${dev}]=$inreqs
dataOutreqs[${hostname}_${dev}]=$outreqs
dataInbytes[${hostname}_${dev}]=$inbytes
dataOutbytes[${hostname}_${dev}]=$outbytes
dataDMA_errs[${hostname}_${dev}]=$DMA_errs
dataElem_errs[${hostname}_${dev}]=$Elem_errs
dataComm_errs[${hostname}_${dev}]=$Comm_errs
;;
esac
done
sleep $delta

while true
do
/usr/ios/cli/ioscli fcstat -client 2>/dev/null | \
while read hostname dev wwpn inreqs outreqs ctrlreqs inbytes outbytes DMA_errs Elem_errs Comm_errs rest
do
case "$wwpn" in
0x*)
prevInreqs=${dataInreqs[${hostname}_${dev}]}
prevOutreqs=${dataOutreqs[${hostname}_${dev}]}
prevInbytes=${dataInbytes[${hostname}_${dev}]}
prevOutbytes=${dataOutbytes[${hostname}_${dev}]}
prevDMA_errs=${dataDMA_errs[${hostname}_${dev}]}
prevElem_errs=${dataElem_errs[${hostname}_${dev}]}
prevComm_errs=${dataComm_errs[${hostname}_${dev}]}
dataInreqs[${hostname}_${dev}]=$inreqs
dataOutreqs[${hostname}_${dev}]=$outreqs
dataInbytes[${hostname}_${dev}]=$inbytes
dataOutbytes[${hostname}_${dev}]=$outbytes
dataDMA_errs[${hostname}_${dev}]=$DMA_errs
dataElem_errs[${hostname}_${dev}]=$Elem_errs
dataComm_errs[${hostname}_${dev}]=$Comm_errs

print -p "(${inreqs}-${prevInreqs})/$delta"
read -p inreqs
print -p "(${outreqs}-${prevOutreqs})/$delta"
read -p outreqs
print -p "(${inbytes}-${prevInbytes})/${delta}/1024/1024"
read -p inbytes
print -p "(${outbytes}-${prevOutbytes})/${delta}/1024/1024"
read -p outbytes
print -p "(${DMA_errs}-${prevDMA_errs})/$delta"
read -p DMA_errs
print -p "(${Elem_errs}-${prevElem_errs})/$delta"
read -p Elem_errs
print -p "(${Comm_errs}-${prevComm_errs})/$delta"
read -p Comm_errs

printf "%15s %5s %16s %6.2f %7.2f %7.2f %8.2f %8.2f %9.2f %9.2f\n" "$hostname" "$dev" "$wwpn" "$inreqs" "$outreqs" \
"$inbytes" "$outbytes" "$DMA_errs" "$Elem_errs" "$Comm_errs"
;;
"wwpn")
printf "%15s %5s %16s %6s %7s %7s %8s %8s %9s %9s\n" "$hostname" "$dev" "$wwpn" "$inreqs" "$outreqs" \
"$inbytes" "$outbytes" "$DMA_errs" "$Elem_errs" "$Comm_errs"
;;
"")
[ -n "$hostname" ] && continue
printf "%15s %5s %16s %6s %7s %7s %8s %8s %9s %9s\n" "$hostname" "$dev" "$wwpn" "$inreqs" "$outreqs" \
"$inbytes" "$outbytes" "$DMA_errs" "$Elem_errs" "$Comm_errs"
;;
esac
done
print

sleep $delta
done

$

Das Skript steht zum Download in unserem Download-Bereich zur Verfügung.

Hier noch ein Auszug von einem Lauf des Skriptes (stark gekürzt, nur einer der physikalischen Ports ist dargestellt):

aixvio1 # ./npivstat
       hostname    dev              wwpn  inreqs  outreqs  inbytes  outbytes  DMA_errs  Elem_errs  Comm_errs
...                                                                                                          
        aixvio1   fcs2  0x210000XXXXXXXXXX    0.00  1019.00     0.00    254.75      0.00       0.00       0.00
       aixtsm01   fcs6  0xC0507605E5890074    0.00     0.00     0.00      0.00      0.00       0.00       0.00
       aixtsm02   fcs2  0xC0507609A6C70004    0.00     0.00     0.00      0.00      0.00       0.00       0.00
          aix05   fcs6  0xC0507609A6C7001C    0.00  1018.20     0.00    254.55      0.00       0.00       0.00
...                                                                                                          
        aixvio1   fcs2  0x210000XXXXXXXXXX    0.00  1020.20     0.00    255.05      0.00       0.00       0.00
       aixtsm01   fcs6  0xC050760XXXXXXXXX    0.00     0.00     0.00      0.00      0.00       0.00       0.00
       aixtsm02   fcs2  0xC050760XXXXXXXXX    0.00     0.00     0.00      0.00      0.00       0.00       0.00
          aix05   fcs6  0xC050760XXXXXXXXX    0.00  1019.80     0.00    254.95      0.00       0.00       0.00
...                                                                                                           
        aixvio1   fcs2  0x210000XXXXXXXXXX    0.00   984.80     0.00    246.20      0.00       0.00       0.00
       aixtsm01   fcs6  0xC050760XXXXXXXXX    0.00     0.00     0.00      0.00      0.00       0.00       0.00
       aixtsm02   fcs2  0xC050760XXXXXXXXX    0.00     0.00     0.00      0.00      0.00       0.00       0.00
          aix05   fcs6  0xC050760XXXXXXXXX    0.00   985.00     0.00    246.25      0.00       0.00       0.00
...
^Caixvio1 # 

Im obigen Beispiel generiert der NPIV-Client aix05 ca 250 MB/s an Daten, wärend die anderen beiden NPIV-Clients aixtsm01 und aixtsm02 während dieser Zeit keinen FC-Verkehr produzieren.

Das Skript muss als root auf einem Virtual-I/O-Server gestartet werden. Natürlich kann man das Skript auf die eigenen Bedürfnisse anpassen.

Welche FC-Ports gehören zu welcher SAN-Fabric?

In größeren Umgebungen mit vielen Managed Systems und mehreren SAN-Fabrics ist es trotz guter Dokumentation nicht immer klar, zu welcher SAN-Fabric ein FC-Port gehört. In vielen Fällen steht die Hardware weit entfernt vom Bildschirm, eventuell sogar in einem ganz anderen Gebäude oder auch geographisch weiter entfernt, so dass man auch nicht einfach vor Ort die Verkabelung überprüfen kann.

In diesem Blog-Beitrag soll gezeigt werden, wie man mit Hilfe von Live-Partition-Mobility (LPM) alle FC-Ports herausfinden kann, die zu einer gegebenen SAN-Fabric gehören.

Wir verwenden der Einfachheit halber das LPAR-Tool, man kann aber auch ohne LPAR-Tool mit Kommandos der HMC CLI arbeiten, also bitte weiterlesen auch wenn das LPAR-Tool nicht verfügbar sein sollte!

Im Folgenden haben wir unsere SAN-Fabrics mit „Fabric1“ und „Fabric2“ bezeichnet. Das unten beschriebene Verfahren kann aber bei beliebig vielen SAN-Fabrics verwendet werden.

Da LPM verwendet werden soll, benötigen wir erst einmal eine LPAR. Wir legen die LPAR auf einem unserer Managed Systems (ms09) mit dem LPAR-Tool an:

$ lpar –m ms09 create fabric1
Creating LPAR fabric1:
done
Register LPAR
done
$

Man kann natürlich auch die HMC GUI oder die HMC CLI verwenden, um die LPAR anzulegen. Wir haben die neue LPAR nach unserer SAN-Fabric „fabric1“ benannt. Jeder andere Name ist aber genauso gut!

Als nächstes benötigt unsere LPAR einen virtuellen FC-Adapter der auf einen FC-Port der Fabric „Fabric1“ gemappt ist:

$ lpar –p standard addfc fabric1 10 ms09-vio1
fabric1 10 ms09-vio1 20
$

Das LPAR-Tool hat auf dem VIOS ms09-vio1 den Slot 20 für den VFC Server Adapter ausgewählt und neben dem Client- auch den Server-Adapter angelegt. Über das HMC GUI oder die HMC CLI können Client und Server Adapter natürlich genauso angelegt werden. Da die LPAR nicht aktiv ist, wurde mittels der Option ‚-p standard‘ angegeben das nur das Profil angepasst werden soll.

Um den VFC Server Adapter auf einen physikalischen FC-Port zu mappen, benötigen wir die Nummer des vfchost Adapters auf dem VIOS ms09-vio1:

$ vios npiv ms09-vio1
VIOS       ADAPT NAME  SLOT  CLIENT OS      ADAPT   STATUS        PORTS
…
ms09-vio1  vfchost2    C20   (3)    unknown  -     NOT_LOGGED_IN  0
…
$

Im Slot 20 haben wir den vfchost2, dieser muss also nun auf einen FC-Port von Fabric „Fabric1“ gemappt werden. Wir mappen auf den FC-Port fcs8, von dem wir wissen das dieser an die Fabric „Fabric1“ geht. Sollten wir uns irren, werden wir dies in Kürze sehen.

Schauen wir uns kurz die WWPNs für den virtuellen FC Client Adapter an:

$ lpar -p standard vslots fabric1
SLOT  REQ  TYPE           DATA
0     yes  serial/server  remote: (any)/any hmc=1
1     yes  serial/server  remote: (any)/any hmc=1
10    no   fc/client      remote: ms09-vio1(1)/20 c050760XXXXX0016,c050760XXXXX0017
$

Ausgestattet mit den WWPNs lassen wir uns nun von unseren Storage-Kollegen eine kleine LUN für diese WWPNs erstellen, die nur in der Fabric „Fabric1“ sichtbar sein soll. Nachdem die Storage-Kollegen die LUN angelegt und das Zoning entsprechend angepasst haben, aktivieren wir unsere neue LPAR im OpenFirmware Modus und öffnen eine Console:

$ lpar activate –p standard –b of fabric1

$ lpar console fabric1

Open in progress 

Open Completed.

IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM
...

          1 = SMS Menu                          5 = Default Boot List
          8 = Open Firmware Prompt              6 = Stored Boot List

     Memory      Keyboard     Network     SCSI     Speaker  ok
0 >

Das geht natürlich auch wieder ohne Probleme mit GUI oder HMC CLI.

Im OpenFirmware Modus starten wir ioinfo und überprüfen ob die kleine LUN sichtbar ist. Wenn diese nicht sichtbar ist, dann lag der FC-Port fcs8 doch nicht in der richtigen Fabric!

0 > ioinfo

!!! IOINFO: FOR IBM INTERNAL USE ONLY !!!
This tool gives you information about SCSI,IDE,SATA,SAS,and USB devices attached to the system

Select a tool from the following

1. SCSIINFO
2. IDEINFO
3. SATAINFO
4. SASINFO
5. USBINFO
6. FCINFO
7. VSCSIINFO

q - quit/exit

==> 6

FCINFO Main Menu
Select a FC Node from the following list:
 # Location Code           Pathname
-------------------------------------------------
 1. U9117.MMC.XXXXXXX7-V10-C10-T1  /vdevice/vfc-client@3000000a

q - Quit/Exit

==> 1

FC Node Menu
FC Node String: /vdevice/vfc-client@3000000a
FC Node WorldWidePortName: c050760XXXXXX0016
------------------------------------------
1. List Attached FC Devices
2. Select a FC Device
3. Enable/Disable FC Adapter Debug flags

q - Quit/Exit

==> 1

1. 500507680YYYYYYY,0 - 10240 MB Disk drive

Hit a key to continue...

FC Node Menu
FC Node String: /vdevice/vfc-client@3000000a
FC Node WorldWidePortName: c050760XXXXXX0016
------------------------------------------
1. List Attached FC Devices
2. Select a FC Device
3. Enable/Disable FC Adapter Debug flags

q - Quit/Exit

==> q

Die LUN taucht auf, die WWPN 500507680YYYYYYY ist die WWPN des zugehörigen Storage-Ports, diese ist weltweit eindeutig und kann damit nur in der Fabric „Fabric1“ gesehen werden!

Das Aktivieren der LPAR im OpenFirmware Modus hat zwei Zwecken gedient, zum Einen um zu Überprüfen das die LUN sichtbar ist und unser Mapping auf fcs8 richtig war, zum Anderen hat das System nun die Information welche WWPNs bei einer LPM-Operation gefunden werden müssen, damit die LPAR verschoben werden kann!

Wir deaktivieren die LPAR nun wieder.

$ lpar shutdown –f fabric1
$

Führen wir nun eine LPM Validierung für die inaktive LPAR durch, so kann eine Valdierung nur auf einem Managed System erfolgreich sein, welches einen Virtual-I/O-Server mit einer Anbindung an die Fabric „Fabric1“ besitzt. Mit einer kleinen for-Schleife probieren wir das für einige Managed Systems aus:

$ for ms in ms10 ms11 ms12 ms13 ms14 ms15 ms16 ms17 ms18 ms19
do
echo $ms
lpar validate fabric1 $ms >/dev/null 2>&1
if [ $? -eq 0 ]
then
   echo connected
else
   echo not connected
fi
done

Das Kommando auf der HMC CLI zum Validieren ist ‚migrlpar‚.

Da wir nicht an den Meldungen der Validierung interessiert sind, leiten wir alle Meldungen der Validierung nach /dev/null um.

Hier die Ausgabe der for-Schleife:

ms10
connected
ms11
connected
ms12
connected
ms13
connected
ms14
connected
ms15
connected
ms16
connected
ms17
connected
ms18
connected
ms19
connected

Offensichtlich sind alle Managed Systems an die Fabric „Fabric1“ angebunden. Das ist aber nicht sehr überraschend, da diese genau so aufgebaut wurden.

Interessanter wäre es nun zu wissen welcher FC-Port auf den Managed Systems (Virtual-I/O-Servern) an die Fabric „Fabric1“ angebunden sind. Dazu benötigen wir für jedes Managed System eine Liste der Virtual-I/O-Server und für jeden Virtual-I/O-Server die Liste der NPIV-fähigen FC-ports.

Die Liste der Virtual-I/O-Server kann relativ einfach mit dem folgenden Kommando gewonnen werden:

$ vios -m ms11 list
ms11-vio1
ms11-vio2
$

Auf der HMC CLI kann man das Kommando: lssyscfg -r lpar -m ms11 -F „name lpar_env“ verwenden.

Die NPIV-fähigen Ports kann man mit dem folgenden Kommando herausfinden :

$ vios lsnports ms11-vio1
ms11-vio1       name             physloc                        fabric tports aports swwpns  awwpns
ms11-vio1       fcs0             U78AA.001.XXXXXXX-P1-C5-T1          1     64     60   2048    1926
ms11-vio1       fcs1             U78AA.001.XXXXXXX-P1-C5-T2          1     64     60   2048    2023
...
$

Zum Einsatz kommt das Kommando lsnports auf dem Virtual-I/O-Server. Dieses kann man natürlich auch ohne LPAR-Tool ausführen.

Bei der LPM-Validierung (und natürlich auch bei der Migration) kann man angeben welcher FC-Port auf dem Ziel-System verwendet werden soll, wir zeigen dies hier einmal an zwei Beispielen:

$ lpar validate fabric1 ms10 virtual_fc_mappings=10/ms10-vio1///fcs0 >/dev/null 2>&1
$ echo $?
0
$ lpar validate fabric1 ms10 virtual_fc_mappings=10/ms10-vio1///fcs1 >/dev/null 2>&1
$ echo $?
1
$

Die Validierung mit Ziel ms10-vio1 und fcs0 war erfolgreich, d.h. das dieser FC-Port an die Fabric „Fabric1“ angeschlossen ist. Die Validierung mit Ziel ms10-vio1 und fcs1 war nicht erfolgreich, d.h. das dieser Port nicht an die Fabric „Fabric1“ angebunden ist.

Hier kurz das Kommando das auf der HMC aufgerufen werden muss, falls das LPAR-Tool nicht verwendet werden soll:

$ lpar -v validate fabric1 ms10 virtual_fc_mappings=10/ms10-vio1///fcs0
hmc02: migrlpar -m ms09 -o v -p fabric1 -t ms10 -v -d 5 -i 'virtual_fc_mappings=10/ms10-vio1///fcs0'
$

Um alle FC-Ports die an die Fabric „Fabric1“ angeschlossen sind herauszufinden, brauchen wir eine Schleife über die zu überprüfenden Managed Systems, für jedes Managed Systeme benötigen wir dann eine Schleife über alle VIOS des Managed Systems und letztlich für jeden VIOS eine Schleife über alle FC-Ports mit einer LPM-Validierung.

Wir haben dies im folgenden Skript zusammengefasst. Damit es nicht zu lang wird, haben wir einige Checks weggelassen:

$ cat bin/fabric_ports
#! /bin/ksh
# Copyright © 2018, 2019 by PowerCampus 01 GmbH

LPAR=fabric1

STATE=$( lpar prop -F state $LPAR | tail -1 )

print "LPAR: $LPAR"
print "STATE: $STATE"

if [ "$STATE" != "Not Activated" ]
then
            print "ERROR: $LPAR must be in state 'Not Activated'"
            exit 1
fi

fcsCount=0
fcsSameFabricCount=0

for ms in $@
do
            print "MS: $ms"
            viosList=$( vios -m $ms list )

            for vios in $viosList
            do
                        rmc_state=$( lpar -m $ms prop -F rmc_state $vios | tail -1 )
                        if [ "$rmc_state" = "active" ]
                        then
                                    fcList=
                                    vios -m $ms lsnports $vios 2>/dev/null | \
                                    while read vio fcport rest
                                    do
                                               if [ "$fcport" != "name" ]
                                               then
                                                           fcList="${fcList} $fcport"
                                               fi
                                    done

                                    for fcport in $fcList
                                    do
                                               print -n "${vios}: ${fcport}: "
                                               lpar validate $LPAR $ms virtual_fc_mappings=10/${vios}///${fcport} </dev/null >/dev/null 2>&1
                                               case "$?" in
                                               0)
                                                           print "yes"
                                                           fcsSameFabricCount=$( expr $fcsSameFabricCount + 1 )
                                                           ;;
                                               *) print "no" ;;
                                               esac
                                               fcsCount=$( expr $fcsCount + 1 )
                                    done
                        else
                                    print "${vios}: RMC not active"
                        fi
            done
done

print "${fcsCount} FC-ports investigated"
print "${fcsSameFabricCount} FC-ports in same fabric"

$

Zur Illustration zeigen wir hier kurz einen Lauf des Skripts über einige Managed Systems. Wir starten das Skript mittels time, um zu sehen wie lange das ganze dauert:

$ time bin/fabric_ports ms10 ms11 ms12 ms13 ms14 ms15 ms16 ms17 ms18 ms19
LPAR: fabric1
STATE: Not Activated
MS: ms10
ms10-vio3: RMC not active
ms10-vio1: fcs0: yes
ms10-vio1: fcs2: yes
ms10-vio1: fcs4: no
ms10-vio1: fcs6: no
ms10-vio2: fcs0: yes
ms10-vio2: fcs2: yes
ms10-vio2: fcs4: no
ms10-vio2: fcs6: no
MS: ms11
ms11-vio3: RMC not active
ms11-vio1: fcs0: no
ms11-vio1: fcs1: no
ms11-vio1: fcs2: no
ms11-vio1: fcs3: yes
ms11-vio1: fcs4: no
…
ms19-vio2: fcs2: no
ms19-vio2: fcs3: no
ms19-vio2: fcs0: no
ms19-vio2: fcs1: no
ms19-vio2: fcs4: no
ms19-vio2: fcs5: no
132 FC-ports investigated
17 FC-ports in same fabric

real       2m33.978s
user      0m4.597s
sys       0m8.137s
$

In ca 150 Sekunden wurden 132 FC-Ports untersucht (LPM-Validierungen durchgeführt). Das bedeutet das eine Validierung im Durchschnitt in etwa 1 Sekunde benötigt hat.

Wir haben damit alle FC-Ports gefunden, welche an die Fabric „Fabric1“ angeschlossen sind.

Das lässt sich natürlich für weitere Fabrics analog durchführen.

Noch ein Hinweis, nicht alle Ports oben sind verkabelt!