Überwachung von virtuellem FC Client Verkehr

Mit dem LPAR-Tool lassen sich jederzeit Statistiken für alle virtuellen FC Clients mit dem Kommando „vios fcstat“ anzeigen. Damit lässt sich jederzeit feststellen welche Client LPARs gerade welchen I/O-Durchsatz haben (bei Verwendung von NPIV).

Welche NPIV fähigen FC-Adapter es auf einem Virtual-I/O-Server gibt, lässt sich leicht mit „vios lsnports“ herausfinden:

$ vios lsnports ms15-vio1
NAME  PHYSLOC                     FABRIC  TPORTS  APORTS  SWWPNS  AWWPNS
fcs0  U78CB.001.XXXXXXX-P1-C5-T1  1       64      62      2032    2012
fcs1  U78CB.001.XXXXXXX-P1-C5-T2  1       64      62      2032    2012
fcs2  U78CB.001.XXXXXXX-P1-C5-T3  1       64      61      2032    1979
fcs3  U78CB.001.XXXXXXX-P1-C5-T4  1       64      61      2032    1979
fcs4  U78CB.001.XXXXXXX-P1-C3-T1  1       64      50      3088    3000
fcs5  U78CB.001.XXXXXXX-P1-C3-T2  1       64      63      3088    3077
$

Wir lassen uns die FC Client Statistiken mit dem Kommando „vios fcstat“ anzeigen, dabei werden per Default alle 10 Sekunden die Daten für alle virtuellen FC Clients des angegebenen Virtual-I/O-Servers, ausgegeben:

$ vios fcstat ms15-vio1
HOSTNAME   PHYSDEV  WWPN                DEV    INREQS    INBYTES      OUTREQS    OUTBYTES     CTRLREQS
ms15-vio1  fcs1     0x210000XXXXX56EC5  fcs1   774.75/s  129.51 MB/s  1332.71/s   92.96 MB/s  20
aixtsmp1   fcs2     0xC050760XXXXX0058  fcs6   318.10/s   83.39 MB/s  481.34/s   126.18 MB/s  0
ms15-vio1  fcs2     0x210000XXXXX56EC6  fcs2   318.10/s   83.39 MB/s  480.78/s   126.03 MB/s  0
aixtsmp1   fcs5     0xC050760XXXXX003E  fcs0   583.98/s   60.35 MB/s  1835.17/s  124.86 MB/s  0
ms15-vio1  fcs5     0x10000090XXXXX12D  fcs5   583.70/s   60.27 MB/s  1836.21/s  124.92 MB/s  0
ms15-vio1  fcs0     0x21000024XXXXXEC4  fcs0   923.19/s  165.08 MB/s  1032.81/s   17.25 MB/s  46
aixtsmp3   fcs1     0xC050760XXXXX00E4  fcs0   775.12/s  129.48 MB/s  1047.32/s   17.15 MB/s  20
aixtsmp3   fcs0     0xC050760XXXXX00DE  fcs1   775.78/s  128.99 MB/s  1037.99/s   17.39 MB/s  20
aixtsmp1   fcs1     0xC050760XXXXX0056  fcs5     0.00/s    0.00 B/s   290.39/s    76.12 MB/s  0
aixtsmp1   fcs0     0xC050760XXXXX0052  fcs4   142.89/s   36.12 MB/s    0.00/s     0.00 B/s   26
ms15-vio1  fcs4     0x10000090XXXXX12C  fcs4   234.97/s    4.58 MB/s  621.78/s    11.12 MB/s  40
cus1dbp01  fcs4     0xC050760XXXXX0047  fcs0   243.55/s    5.05 MB/s  432.33/s     9.95 MB/s  0
cus1dbi01  fcs4     0xC050760XXXXX0044  fcs1     0.94/s   10.42 KB/s   87.28/s   459.26 KB/s  0
...
HOSTNAME   PHYSDEV  WWPN                DEV    INREQS     INBYTES      OUTREQS    OUTBYTES     CTRLREQS
aixtsmp1   fcs5     0xC050760XXXXX003E  fcs0   1772.84/s  162.24 MB/s  1309.30/s   70.60 MB/s  68
ms15-vio1  fcs5     0x10000090XXXXX12D  fcs5   1769.13/s  161.95 MB/s  1305.60/s   70.54 MB/s  68
ms15-vio1  fcs1     0x21000024XXXXXEC5  fcs1   883.55/s   118.97 MB/s  1551.97/s  108.78 MB/s  43
ms15-vio1  fcs2     0x21000024XXXXXEC6  fcs2   201.09/s    52.72 MB/s  497.26/s   130.35 MB/s  0
aixtsmp1   fcs2     0xC050760XXXXX0058  fcs6   201.09/s    52.72 MB/s  495.40/s   129.87 MB/s  0
ms15-vio1  fcs0     0x21000024XXXXXEC4  fcs0   923.54/s   128.89 MB/s  1234.98/s   23.31 MB/s  65
aixtsmp3   fcs0     0xC050760XXXXX00DE  fcs1   876.93/s   118.93 MB/s  1234.98/s   23.32 MB/s  44
aixtsmp3   fcs1     0xC050760XXXXX00E4  fcs0   884.17/s   119.07 MB/s  1223.50/s   23.00 MB/s  43
aixtsmp1   fcs1     0xC050760XXXXX0056  fcs5     0.00/s     0.00 B/s   325.83/s    85.41 MB/s  0
...
^C
$

Ausgegeben werden der LPAR-Name, der physikalische FC-Port (PHYSDEV) auf dem Virtual-I/O-Server, die WWPN des Client Adapters, der virtuelle FC-Port (DEV), sowie die Anzahl Requests (INREQS und OUTREQS) und dabei transferierte Bytes (INBYTES und OUTBYTES). Die Transfer-Raten werden dabei jeweils in KB/s, MB/s oder GB/s ausgegeben. Auf größeren Systemen kann die Ausgabe sehr lang werden! Die Ausgabe wird ist nach Durchsatz sortiert, d.h. die aktivsten virtuellen Clients Adapter werden als erstes ausgegeben. Über die Option ‚-t‚ (Top) kann die Ausgabe auf eine gewünschte Zahl von Datensätzen eingeschränkt werden: z.B. werden mit ‚-t 10‚ nur die 10 Adapter mit dem höchsten Durchsatz ausgegeben. Zusätzlich kann über ein weiteres Argument auch die Intervall Länge (in Sekunden) angegeben werden, hier ein kurzes Beispiel:

$ vios fcstat -t 10 ms15-vio1 2
HOSTNAME   PHYSDEV  WWPN                DEV   INREQS     INBYTES      OUTREQS    OUTBYTES     CTRLREQS
ms15-vio1  fcs1     0x21000024XXXXXEC5  fcs1  1034.58/s   86.56 MB/s  2052.23/s  160.11 MB/s  20
ms15-vio1  fcs5     0x10000090XXXXX12D  fcs5  1532.63/s  115.60 MB/s  1235.72/s  118.32 MB/s  40
aixtsmp1   fcs5     0xC050760XXXXX003E  fcs0  1510.33/s  114.88 MB/s  1236.49/s  118.27 MB/s  40
aixtsmp3   fcs1     0xC050760XXXXX00E4  fcs0  1036.11/s   86.67 MB/s  1612.25/s   44.86 MB/s  20
aixtsmp3   fcs0     0xC050760XXXXX00DE  fcs1  1031.50/s   86.29 MB/s  1588.02/s   44.27 MB/s  20
ms15-vio1  fcs0     0x21000024XXXXXEC4  fcs0  1029.58/s   86.31 MB/s  1567.63/s   43.65 MB/s  20
aixtsmp1   fcs1     0xC050760XXXXX0056  fcs5    0.00/s     0.00 B/s   436.52/s   114.43 MB/s  0
ms15-vio1  fcs2     0x21000024XXXXXEC6  fcs2    0.00/s     0.00 B/s   435.75/s   114.23 MB/s  0
aixtsmp1   fcs2     0xC050760XXXXX0058  fcs6    0.00/s     0.00 B/s   432.68/s   113.42 MB/s  0
ms15-vio1  fcs4     0x10000090XXXXX12C  fcs4  144.99/s     0.78 MB/s  478.83/s     2.22 MB/s  46
HOSTNAME   PHYSDEV  WWPN                DEV   INREQS    INBYTES      OUTREQS    OUTBYTES     CTRLREQS
aixtsmp1   fcs5     0xC050760XXXXX003E  fcs0  758.14/s   35.55 MB/s  1822.99/s  112.60 MB/s  0
ms15-vio1  fcs5     0x10000090XXXXX12D  fcs5  757.38/s   35.52 MB/s  1821.46/s  112.59 MB/s  0
ms15-vio1  fcs0     0x21000024XXXXXEC4  fcs0  944.23/s   85.09 MB/s  1657.58/s   41.40 MB/s  2
aixtsmp3   fcs0     0xC050760XXXXX00DE  fcs1  943.47/s   85.15 MB/s  1636.90/s   40.68 MB/s  2
ms15-vio1  fcs1     0x21000024XXXXXEC5  fcs1  949.21/s   84.88 MB/s  1586.74/s   39.41 MB/s  2
aixtsmp3   fcs1     0xC050760XXXXX00E4  fcs0  946.53/s   84.64 MB/s  1584.83/s   39.40 MB/s  2
ms15-vio1  fcs4     0x10000090XXXXX12C  fcs4   39.44/s  449.92 KB/s  676.97/s     3.63 MB/s  10
cus1dbp01  fcs4     0xC050760XXXXX0047  fcs0   29.10/s  471.69 KB/s  310.92/s     1.28 MB/s  4
cus1mqp01  fcs4     0xC050760XXXXX002C  fcs0    1.91/s    4.71 KB/s  230.12/s     1.66 MB/s  0
cus2orap01 fcs4     0xC050760XXXXX000F  fcs0    0.77/s    4.31 KB/s   48.25/s   263.49 KB/s  0
^C
$

Über die Option ‚-s‚ (Select) können auch nur Datensätze eines bestimmten Clients (‚-s hostname=aixtsmp1‚) oder nur Datensätze eines bestimmten physikalischen Ports (‚-s physdev=fcs1‚) ausgewählt und ausgegeben werden:

$ vios fcstat -s hostname=aixtsmp1 ms15-vio1 2
HOSTNAME  PHYSDEV  WWPN                DEV   INREQS     INBYTES      OUTREQS    OUTBYTES     CTRLREQS
aixtsmp1  fcs5     0xC050760XXXXX003E  fcs0  1858.72/s   51.14 MB/s  1231.82/s  104.20 MB/s  0
aixtsmp1  fcs2     0xC050760XXXXX0058  fcs6    6.94/s     1.82 MB/s    6.94/s     1.82 MB/s  0
aixtsmp1  fcs4     0xC050760XXXXX0042  fcs2    0.39/s     1.19 KB/s    0.39/s   395.05 B/s   0
aixtsmp1  fcs1     0xC050760XXXXX0056  fcs5    0.39/s     7.72 B/s     0.00/s     0.00 B/s   1
aixtsmp1  fcs0     0xC050760XXXXX0052  fcs4    0.00/s     0.00 B/s     0.00/s     0.00 B/s   0
aixtsmp1  fcs3     0xC050760XXXXX005A  fcs7    0.00/s     0.00 B/s     0.00/s     0.00 B/s   0
HOSTNAME  PHYSDEV  WWPN                DEV   INREQS     INBYTES      OUTREQS    OUTBYTES     CTRLREQS
aixtsmp1  fcs5     0xC050760XXXXX003E  fcs0  1760.48/s  111.48 MB/s  1125.70/s   95.20 MB/s  0
aixtsmp1  fcs2     0xC050760XXXXX0058  fcs6    8.53/s     2.24 MB/s  484.61/s   127.04 MB/s  0
aixtsmp1  fcs1     0xC050760XXXXX0056  fcs5    0.00/s     0.00 B/s   469.04/s   122.96 MB/s  0
aixtsmp1  fcs4     0xC050760XXXXX0042  fcs2    0.37/s     1.14 KB/s    0.00/s     0.00 B/s   0
aixtsmp1  fcs0     0xC050760XXXXX0052  fcs4    0.00/s     0.00 B/s     0.00/s     0.00 B/s   0
aixtsmp1  fcs3     0xC050760XXXXX005A  fcs7    0.00/s     0.00 B/s     0.00/s     0.00 B/s   0
^C
$

Mit dem „vios fcstat“ Kommando lassen sich auf extrem einfache Weise jederzeit FC-Durchsatz von beliebigen LPARs, sozusagen auf Knopfdruck, ausgeben.

Bei kleineren Intervallen leidet die Genauigkeit der angezeigten Werte. Bei 2 Sekunden Intervallen beträgt die Ungenauigkeit ca 10%. Die Relationen zwischen den angezeigten Werten ist allerdings korrekt.

Das Attribut „label“ für FC-Adapter

Ab AIX 7.2 TL4 bzw. VIOS 3.1.1.10 gibt es für physikalische FC-Adapter das neue Attribut „label“. Dieses Attribut kann vom Administrator auf eine beliebige Zeichenkette (maximal 255 Zeichen) gesetzt werden. Auch wenn das Attribut nur informativen Character hat, kann es in PowerVM Virtualisierungsumgebungen äußerst nützlich sein. Hat man eine größere Anzahl von Managed Systems, ist nicht immer klar erkennbar an welche FC-Fabric ein bestimmter FC-Port angebunden ist. Das lässt sich natürlich in der Dokumentation der eigenen Systeme nachschauen, ist aber doch mit einem gewissen Aufwand verbunden. Einfacher ist es, wenn man diese Information direkt mit den FC-Adaptern verknüpft, was das neue Attribut „label“ auf einfache Weise erlaubt. Unter AIX:

# chdev -l fcs0 -U -a label="Fabric_1"
fcs0 changed
# lsattr -El fcs0 -a label -F value
Fabric_1
#

Auf Virtual-I/O-Servern kann das Attribut auch über den padmin-Account gesetzt werden:

/home/padmin> chdev -dev fcs1 -attr label="Fabric_2" -perm
fcs1 changed
/home/padmin> lsdev -dev fcs1 -attr label                
value

Fabric_2
/home/padmin>

Das Attribut ist auch für ältere FC-Adapter definiert.

Bei konsequenter Verwendung des Attributes „label“ kann man jederzeit für jeden FC-Adapter online feststellen, an welche Fabric der Adapter angebunden ist. Dazu muß lediglich einmal für jeden FC-Adapter diese Information hinterlegt werden.

(Hinweis: Für AIX 7.1 wurde das Attribut „label“ nicht implementiert, zumindest nicht bis 7.1 TL5 SP6.)

LPAR-Tool 1.6.0.0 ist verfügbar

Ab sofort ist unser LPAR-Tool in der Version 1.6.0.0 in unserem Download-Bereich verfügbar!

Neue Feature sind:

  • Online Überwachung von SEA Client Statistiken (vios help seastat)
  • Online Überwachung von virtuellen FC Client Adaptern (vios help fcstat)
  • Anzeige historischer Prozessor und Memory Daten (lpar help lsmem, lpar help lsproc)

Im Artikel Überwachung des SEA Netzwerk-Verkehrs werden die Möglichkeiten SEA Client Statistiken abzurufen gezeigt.

Die Auswirkungen von FC-Ports ohne Link

FC-Ports die nicht verwendet werden und keinen Link haben, sollten deaktiviert werden, da diese die Laufzeit einer Reihe von Kommandos und Operationen (z.B. LPM) deutlich verlängern.

(Hinweis: in einigen Beispielen wird unser LPAR-Tool verwendet, es werden aber auch immer die Kommandos auf der HMC, oder dem Virtual-I/O-Server gezeigt!)

Auf einem unserer Virtual-I/O-Server (ms26-vio1) sind 2 4-Port FC Adapter in Verwendung:

$ lpar lsslot ms26-vio1
DRC_NAME                  DRC_INDEX  IOPOOL  DESCRIPTION
U78D3.001.XXXXXXX-P1-C49  21040015   none    PCIe3 x8 SAS RAID Internal Adapter 6Gb
U78D3.001.XXXXXXX-P1-C7   2103001C   none    PCIe3 4-Port 16Gb FC Adapter
U78D3.001.XXXXXXX-P1-C2   21010021   none    PCIe3 4-Port 16Gb FC Adapter
$
(HMC: lshwres -r io --rsubtype slot -m ms26 --filter lpar_names=ms26-vio1)

Es sind allerdings nur 2 Ports verkabelt:

$ vios lsnports ms26-vio1
NAME  PHYSLOC                     FABRIC  TPORTS  APORTS  SWWPNS  AWWPNS
fcs0  U78D3.001.XXXXXXX-P1-C2-T1  1       64      64      3072    3072
fcs4  U78D3.001.XXXXXXX-P1-C7-T1  1       64      64      3072    3072
$
(VIOS: lsnports)

Beim Arbeiten mit dem Virtual-I/O-Server fällt auf, das einige der Kommandos eine unerwartet lange Laufzeit haben und teilweise für längere Zeit hängen. Im Folgenden sind einige Kommandos angegeben, zusammen mit der benötigten Laufzeit:

(0)padmin@ms26-vio1:/home/padmin> time netstat –cdlistats
…
Error opening device: /dev/fscsi1
errno: 00000045

Error opening device: /dev/fscsi2
errno: 00000045

Error opening device: /dev/fscsi3
errno: 00000045

Error opening device: /dev/fscsi5
errno: 00000045

Error opening device: /dev/fscsi6
errno: 00000045

Error opening device: /dev/fscsi7
errno: 00000045

real    1m13.56s
user    0m0.03s
sys     0m0.10s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time lsnports
name             physloc                        fabric tports aports swwpns  awwpns
fcs0             U78D3.001.XXXXXXX-P1-C2-T1          1     64     64   3072    3072
fcs4             U78D3.001.XXXXXXX-P1-C7-T1          1     64     64   3072    3072

real    0m11.61s
user    0m0.01s
sys     0m0.00s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time fcstat fcs1

Error opening device: /dev/fscsi1
errno: 00000045

real    0m11.31s
user    0m0.01s
sys     0m0.01s
(4)padmin@ms26-vio1:/home/padmin>

Auch LPM-Operationen dauern deutlich länger, da bei der Suche nach passenden FC-Ports für die nötigen NPIV-Mappings alle FC-Ports untersucht werden. Dies kann zu Verzögerungen im Minuten-Bereich führen, bevor die Migration dann letztlich gestartet wird.

Um diese unnötig langen Laufzeiten zu vermeiden, sollten nicht verkabelte FC-Ports nicht aktiviert werden. Das fscsi-Device besitzt das Attribut autoconfig mit den möglichen Werten defined und available. Per Default wird der Wert available verwendet, was dazu führt das der Kernel das Device konfiguriert und aktiviert, auch wenn es keinen Link besitzt, was zu den oben gezeigten Wartezeiten führt. Setzt man das Attribut autoconfig auf defined, dann wird das fscsi-Device nicht aktiviert, es bleibt dann im Zustand defined.

Im folgenden Beispiel wird gezeigt, wie man das Device fscsi1 umkonfiguriert:

$ vios chdev ms26-vio1 fscsi1 autoconfig=defined
$
(VIOS: chdev -dev fscsi1 -attr autoconfig=defined)
$
$ vios rmdev ms26-vio1 fscsi1
$
(VIOS: rmdev -dev fscsi1 –ucfg)
$
$ vios lsdev ms26-vio1 fscsi1
NAME    STATUS   PHYSLOC                     PARENT  DESCRIPTION
fscsi1  Defined  U78D3.001.XXXXXXX-P1-C2-T2  fcs1    FC SCSI I/O Controller Protocol Device
$
(VIOS: lsdev -dev fscsi1)
$
$  vios lsattr ms26-vio1 fscsi1
ATTRIBUTE     VALUE      DESCRIPTION                            USER_SETTABLE
attach        none       How this adapter is CONNECTED          False
autoconfig    defined    Configuration State                    True
dyntrk        yes        Dynamic Tracking of FC Devices         True+
fc_err_recov  fast_fail  FC Fabric Event Error RECOVERY Policy  True+
scsi_id       Adapter    SCSI ID                                False
sw_fc_class   3          FC Class for Fabric                    True
$
(VIOS: lsdev -dev fscsi1 –attr)
$

Durch das Attribut autoconfig=defined bleibt das fscsi-Device auch bei einem Lauf des cfgmgr auf defined!

Wiederholt man die Laufzeit-Messung der Kommandos oben, sieht man das die Laufzeit der Kommandos sich schon meßbar verbessert hat:

(0)padmin@ms26-vio1:/home/padmin> time netstat –cdlistats
…
Error opening device: /dev/fscsi1
errno: 00000005

Error opening device: /dev/fscsi2
errno: 00000045

Error opening device: /dev/fscsi3
errno: 00000045

Error opening device: /dev/fscsi5
errno: 00000045

Error opening device: /dev/fscsi6
errno: 00000045

Error opening device: /dev/fscsi7
errno: 00000045

real    1m1.02s
user    0m0.04s
sys     0m0.10s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time lsnports
name             physloc                        fabric tports aports swwpns  awwpns
fcs0             U78D3.001.XXXXXXX-P1-C2-T1          1     64     64   3072    3072
fcs4             U78D3.001.XXXXXXX-P1-C7-T1          1     64     64   3072    3072

real    0m9.70s
user    0m0.00s
sys     0m0.01s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time fcstat fcs1

Error opening device: /dev/fscsi1
errno: 00000005

real    0m0.00s
user    0m0.02s
sys     0m0.00s
(4)padmin@ms26-vio1:/home/padmin>

Die Laufzeit des netstat-Kommandos hat sich um 12 Sekunden verkürzt, das Komnando lsnports war ca 2 Sekunden schneller.

Wir setzen das autoconfig Attribut jetzt auch bei allen anderen unbenutzten FC-Ports auf defined:

$ for fscsi in fscsi2 fscsi3 fscsi5 fscsi6 fscsi7
> do
> vios chdev ms26-vio1 $fscsi autoconfig=defined
> vios rmdev ms26-vio1 $fscsi
> done
$

Jetzt wiederholen wir die Laufzeit-Messung der Kommandos erneut:

(0)padmin@ms26-vio1:/home/padmin> time netstat –cdlistats
…
Error opening device: /dev/fscsi1
errno: 00000005

Error opening device: /dev/fscsi2
errno: 00000005

Error opening device: /dev/fscsi3
errno: 00000005

Error opening device: /dev/fscsi5
errno: 00000005

Error opening device: /dev/fscsi6
errno: 00000005

Error opening device: /dev/fscsi7
errno: 00000005

real    0m0.81s
user    0m0.03s
sys     0m0.10s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time lsnports         
name             physloc                        fabric tports aports swwpns  awwpns
fcs0             U78D3.001.XXXXXXX-P1-C2-T1          1     64     64   3072    3072
fcs4             U78D3.001.XXXXXXX-P1-C7-T1          1     64     64   3072    3072

real    0m0.00s
user    0m0.01s
sys     0m0.01s
(0)padmin@ms26-vio1:/home/padmin> time fcstat fcs1       

Error opening device: /dev/fscsi1
errno: 00000005

real    0m0.04s
user    0m0.00s
sys     0m0.00s
(4)padmin@ms26-vio1:/home/padmin>

Das Kommando netstat benötigt nun weniger als 1 Sekunde, das Kommando lsnports nur noch 0.1 Sekunden.

Es lohnt sich also das autoconfig Attribut für nicht-benutzte FC-Ports auf defined zu setzen!

 

HSCLB505 The partition cannot use hardware-accelerated encryption

Beim Verschieben einer LPAR mit LPM auf eine ältere Hardware kann der folgende Fehler auftreten:

HSCLB505 The partition cannot use hardware-accelerated encryption on the destination managed system because the destination managed system does not support hardware-accelerated encryption.

Dies bedeutet das Hardware-beschleunigte Verschlüsselung für die LPAR aktiviert ist, jedoch auf dem Ziel Managed System
nicht unterstützt ist.

Die Hardware-beschleunigte Verschlüsselung lässt sich mit dem LPAR-Tool ganz leicht ausschalten:

$ lpar -d chmem lpar01 hardware_mem_encryption=0
$

Ohne LPAR-Tool geht das natürlich auch, z.B. von der HMC-Kommandozeile:

chhwres -m ms01 -r mem -o s -p lpar01 -a 'hardware_mem_encryption=0'

Danach sollte die Validierung und Verschiebung mittels LPM funktionieren.

HSCLB504 The migrating partition cannot use hardware-accelerated Active Memory Expansion

Beim Verschieben einer LPAR mit LPM auf eine ältere Hardware kann der folgende Fehler auftreten:

HSCLB504 The migrating partition cannot use hardware-accelerated Active Memory Expansion on the destination managed system because the destination managed system does not support hardware-accelerated Active Memory Expansion.

Dies bedeutet das Hardware-beschleunigte aktive Memory Erweiterung (AME) für die LPAR aktiviert ist, jedoch auf dem Ziel
Managed System nicht unterstützt ist .

Die Hardware-beschleunigte aktive Memory Erweiterun lässt s ich mit dem LPAR-Tool ganz leicht ausschalten:

$ lpar -d chmem lpar01 hardware_mem_expansion=0
$

Ohne LPAR-Tool geht das natürlich auch, z.B. von der HMC-Kommandozeile:

chhwres -m ms01 -r mem -o s -p lpar01 -a 'hardware_mem_expansion=0'

Danach sollte die Validierung und Verschiebung mittels LPM funktionieren.

LPAR-Tool: welche LPARs haben keine RMC-Verbindung

Status und Konfiguration von LPARs sind regelmäßig benötigte Informationen bei der Administration von LPARs. Mit dem LPAR-Tool lassen sich Informationen wie Status, RMC-Status, Anzahl Cores, Größe RAM, OS-Version und andere Daten, sehr leicht und schnell ermitteln, auch bei hunderten oder tausenden von LPARs. Welche LPARs keine RMC-Verbindung haben, wird in einem der Beispiele gezeigt.

Alle folgenden Beispiele wurden auf einer Umgebung mit 10 HMCs, 50 Managed Systems und etwas über 500 LPARs durchgeführt. Zur Orientierung wie lange das LPAR-Tool benötigt, wurden jeweils die Laufzeiten der Kommandos mit time gemessen und angegeben.

Die Namen der LPARs wurden in den gezeigten Ausgaben manuell abgeändert und durch generische Namen lparXX und aixYY ersetzt.

Zunächst einmal der Status einer einzelnen LPAR:

$ time lpar status aix01
NAME   LPAR_ID  LPAR_ENV   STATE     PROFILE    SYNC  RMC       PROCS  PROC_UNITS  MEM     OS_VERSION
aix01  27       aixlinux   Running   standard   0     active    1      0.1         8192    AIX 7.1 7100-04-02-1614

real    0m0.210s
user    0m0.011s
sys     0m0.013s
$

Natürlich kann man auch mehrere LPARs angeben. Möchte man den Status aller LPARs (in unserem Falle etwas über 500 LPARs) wissen, läßt man einfach das Argument weg:

$ time lpar status
NAME    LPAR_ID  LPAR_ENV   STATE     PROFILE      SYNC  RMC       PROCS  PROC_UNITS  MEM     OS_VERSION
aix01   27       aixlinux   Running   standard     0     active    1      0.1         8192    AIX 7.1 7100-04-02-1614
aix02   1        aixlinux   Running   standard     -     -         1      -           8320    Unknown
...
lpar01  6        aixlinux   Running   standard     0     active    1      0.4         20480   AIX 7.1 7100-04-05-1720

real	0m18.933s
user	0m3.819s
sys	0m3.789s
$

Hierbei werden im Hintergrund vom LPAR-Tool mehr als 150 Kommandos (lshwres und lssyscfg) auf den HMCs abgesetzt!

Die Ausgabe soll jetzt eingeschränkt werden auf LPARs die gerade aktiv sind (state=Running). Hierzu gibt es die Option „-s„, mit der Kriterien für Attribute angegeben werden können, die erfüllt sein müssen. Nur LPARs die diese Kriterien erfüllen, werden ausgegeben:

$ time lpar status -s state=Running
NAME     LPAR_ID  LPAR_ENV   STATE    PROFILE    SYNC  RMC       PROCS  PROC_UNITS  MEM     OS_VERSION
aix01    27       aixlinux   Running  standard   0     active    1      0.1         8192    AIX 7.1 7100-04-02-1614
aix02    1        aixlinux   Running  standard   -     -         1      -           8320    Unknown
...
lpar01   6        aixlinux   Running  standard   0     active    1      0.4         20480   AIX 7.1 7100-04-05-1720

real	0m17.998s
user	0m3.692s
sys	0m3.647s
$

Wir wollen jetzt wissen, auf welchen dieser LPARs RMC nicht funktioniert/nicht aktiv ist. Die Option „-s“ erlaubt es beliebig viele Kriterien zu kombinieren. Es müssen dann alle angegebenen Kriterien erfüllt sein (logischen UND). Der RMC-Zustand findet sich im Attribut rmc_state:

$ time lpar status -s state=Running,rmc_state!=active
NAME     LPAR_ID  LPAR_ENV   STATE    PROFILE    SYNC  RMC       PROCS  PROC_UNITS  MEM     OS_VERSION
aix02    1        aixlinux   Running  standard   -     -         1      -           8320    Unknown
aix03    2        aixlinux   Running  standard   -     -         1      -           8320    Unknown
...
lpar07   4        aixlinux   Running  standard   0     none      1      1.0         4352    Unknown

real	0m19.057s
user	0m3.550s
sys	0m3.512s
$

Als weiteres Beispiel wollen wir wissen auf welchen LPARs AIX 7.1 TL5 installiert ist. Im Attribut os_version findet sich die OS-Version. Mit dem ‚~‚ Operator kann gegen einen regulären Ausdruck verglichen werden (ähnlich wie beim Kommando grep). Wir verwenden den regulären Ausdruck 7100-05:

$ time lpar status -s os_version~7100-05
NAME     LPAR_ID  LPAR_ENV  STATE    PROFILE    SYNC  RMC       PROCS  PROC_UNITS  MEM     OS_VERSION
aix14    14       aixlinux  Running  standard   0     active    2      0.2         16384   AIX 7.1 7100-05-02-1810
aix16    24       aixlinux  Running  standard   0     active    2      0.2         16384   AIX 7.1 7100-05-03-1846
...
lpar10   10       aixlinux  Running  standard   0     active    3      0.3         32768   AIX 7.1 7100-05-02-1810

real	0m18.212s
user	0m3.726s
sys	0m3.676s
$

Bisher haben wir immer das Default Ausgabeformat verwendet. Jetzt würden wir gerne alle Systeme auflisten, die noch unter AIX 6.1 laufen. Aber dieses Mal soll nur der LPAR-Name und die OS-Version ausgegeben werden. Hierfür gibt es die Option „-F„, mit der die gewünschten Ausgabe-Felder angegeben werden können:

$ time lpar status -s os_version~6100 -F name:os_version
aix39:AIX 6.1 6100-07-04-1216
aix46:AIX 6.1 6100-07-04-1216
...
lpar35:AIX 6.1 6100-09-05-1524

real	0m18.041s
user	0m3.619s
sys	0m3.699s
$

Wer lieber JSON-Output hat, kann dies ganz einfach mit der Option „-j“ erreichen, hier das gleiche Beispiel mit JSON-Ausgabe:

$ time lpar status -s os_version~6100 -F name:os_version -j
{
	"name": "aix39",
	"os_version": "AIX 6.1 6100-07-04-1216"
}
{
	"name": "aix46",
	"os_version": "AIX 6.1 6100-07-04-1216"
}
...
{
	"name": "lpar35",
	"os_version": "AIX 6.1 6100-09-05-1524"
}

real	0m21.247s
user	0m3.670s
sys	0m3.720s
$

Natürlich kann man nicht alle Attribut-Namen auswendig wissen! Das ist aber auch gar nicht notwendig, da man sich alle Attribut-Namen einfach anzeigen lassen kann. Man verwendet die Option „-f“ (Stanza-Format) und gibt eine beliebige LPAR an:

$ lpar status -f lpar19
lpar19:
	curr_lpar_proc_compat_mode = POWER7
	curr_mem = 8192
	curr_proc_mode = shared
	curr_proc_units = 0.3
	curr_procs = 2
	name = lpar19
	os_version = AIX 6.1 6100-09-05-1524
...
$

Über die Optionen „-h“ und „-m“ können die LPARs noch in Abhängigkeit von zugehöriger HMC und/oder Managed System ausgewählt werden.

Status aller LPARs mit zugehöriger HMC hmc01:

$ lpar -h hmc01 status

Status aller LPARs deren zugehörige HMC den Typ 7042-CR6 hat:

$ lpar -h 7042-CR6 status

Status aller LPARs deren zugehörige HMC den Typ 7042-CR6 hat und deren Name mit lpar beginnt:

$ lpar -h 7042-CR6 status lpar*

Status aller LPARs auf dem Managed System ms13:

$ lpar -m ms13 status

Status aller LPARs deren Managed System eine S922 ist:

$ lpar -m 9009-22A status

Die vorgestellten Auswahl- und Ausgabemöglichkeiten gelten für alle Ausgabe-Kommandos des LPAR-Tools (außer dem Kommando vios).

Das LPAR-Tool kann in unserem Download-Bereich heruntergeladen werden: https://powercampus.de/download

Das LPAR-Tool beinhaltet eine Test-Lizenz mit einer Gültigkeit bis zum 31. Oktober.

LPAR-Tool in Aktion: Examples

Das LPAR-Tool kann HMCs, Managed Systems, LPARs und Virtual-I/O-Server über die Kommandozeile administrieren. Die aktuelle Version des LPAR-Tools (aktuell: 1.4.0.2), kann von unserer Download-Seite https://powercampus.de/download heruntergeladen werden. Eine Test-Lizenz, gültig bis 31. Oktober, ist enthalten. In diesem Beitrag sollen einige einfache, aber nützliche Anwendungen des LPAR-Tools gezeigt werden.

Eine häufig auftretende Frage in größeren Umgebungen (mehrere HMCs, viele Managed Systems) ist: wo befindet sich eine bestimmte LPAR. Mit dem LPAR-Tool kann diese Frage leicht beantwortet werden, hierfür gibt es das Kommando „lpar show„:

$ lpar show lpar02
NAME    ID  SERIAL     LPAR_ENV  MS    HMCS
lpar02  39  123456789  aixlinux  ms21  hmc01,hmc02
$

Neben dem Namen, der LPAR-ID und der Seriennummer wird auch das Managed System, hier ms21, und die zugehörigen HMCs, hier hmc01 und hmc02, gezeigt. Es können auch mehrere LPARs und/oder Wildcards angegeben werden:

$ lpar show lpar02 lpar01
...
$ lpar show lpar*
...
$

Wird kein Argument angegeben, werden alle LPARs aufgelistet.

 

Eine weitere Frage, die sich häufig stellt, ist der Status der LPAR oder LPARs. Auch dies läßt sich leicht beantworten, dieses Mal mit dem Kommando „lpar status„:

$ lpar status lpar02
NAME    LPAR_ID  LPAR_ENV  STATE    PROFILE   SYNC  RMC     PROCS  PROC_UNITS  MEM   OS_VERSION
lpar02  39       aixlinux  Running  standard  0     active  1      0.7         7168  AIX 7.2 7200-03-02-1846
$

Die LPAR lpar02 ist im Zustand Running, das verwendete Profil heißt standard, die RMC-Verbindung ist active und die LPAR läuft unter AIX 7.2 (TL3 SP2). Die LPAR besitzt 1 Prozessor Core, mit 0.7 Processor Units und 7 GB RAM. Die Spalte SYNC gibt an ob die aktuelle Konfiguration mit dem Profil synchronisiert wird (Attribut sync_curr_profile).

Natürlich lassen sich auch hier mehrere LPARs oder auch alle LPARs angeben.

Möchte man sehen, was das LPAR-Tool im Hintergrund macht, kann man bei den meisten Kommandos die Option „-v“ für verbose-only angeben. Es werden dann die HMC-Kommandos aufgelistet, es werden aber keine Änderungen auf der HMC durchgeführt. Hier die HMC-Kommandos die für die Status-Ausgabe abgesetzt werden:

$ lpar status -v lpar02
hmc01: lssyscfg -r lpar -m ms21
hmc01: lshwres -r mem -m ms21 --level lpar
hmc01: lshwres -r proc -m ms21 --level lpar
$

 

Als nächstes soll das Hinzufügen von zusätzlichem RAM gezeigt werden. Wir starten mit dem Status der LPAR:

$ lpar status lpar02
NAME    LPAR_ID  LPAR_ENV  STATE    PROFILE   SYNC  RMC     PROCS  PROC_UNITS  MEM   OS_VERSION
lpar02  39       aixlinux  Running  standard  0     active  1      0.7         7168  AIX 7.2 7200-03-02-1846
$

Die LPAR läuft und RMC ist aktiv, eine DLPAR-Operation sollte also möglich sein. Wir schauen zunächst nach, ob die maximal mögliche Speichergröße schon verwendet wird:

$ lpar lsmem lpar02
            MEMORY         MEMORY         HUGE_PAGES 
LPAR_NAME  MODE  AME  MIN   CURR  MAX   MIN  CURR  MAX
lpar02     ded   0.0  2048  7168  8192  0    0     0
$

Aktuell verwendet die LPAR 7 GB, maximal möglich sind 8 GB. Eine Erweiterung um 1 GB (1024 MB) sollte also möglich sein. Wir führen die Erweiterung durch, das notwendig Kommando ist „lpar addmem„:

$ lpar addmem lpar02 1024
$

Wir überprüfen den Erfolg, indem wir das Kommando „lpar lsmem“ noch einmal starten:

$ lpar lsmem lpar02
           MEMORY         MEMORY         HUGE_PAGES 
LPAR_NAME  MODE  AME  MIN   CURR  MAX   MIN  CURR  MAX
lpar02     ded   0.0  2048  8192  8192  0    0     0
$

(Übrigens: falls die aktuelle Konfiguration nicht mit dem aktuellen Profil synchronisiert wird, Attribut sync_curr_profile, dann aktualisiert das LPAR-Tool auch das Profil!)

 

Virtuelle Adapter lassen sich mittels „lpar lsvslot“ auflisten:

$ lpar lsvslot lpar02
SLOT  REQ  ADAPTER_TYPE   STATE  DATA
0     Yes  serial/server  1      remote: (any)/any connect_status=unavailable hmc=1
1     Yes  serial/server  1      remote: (any)/any connect_status=unavailable hmc=1
2     No   eth            1      PVID=123 VLANS= ETHERNET0 XXXXXXXXXXXX
6     No   vnic           -      PVID=1234 VLANS=none XXXXXXXXXXXX failover sriov/ms21-vio1/1/3/0/2700c003/2.0/2.0/20/100.0/100.0,sriov/ms21-vio2/2/1/0/27004004/2.0/2.0/10/100.0/100.0
10    No   fc/client      1      remote: ms21-vio1(1)/47 c050760XXXXX0016,c050760XXXXX0017
20    No   fc/client      1      remote: ms21-vio2(2)/25 c050760XXXXX0018,c050760XXXXX0019
21    No   scsi/client    1      remote: ms21-vio2(2)/20
$

Das Beispiel zeigt neben virtuellen FC- und SCSI-Adaptern auch einen vNIC Adapter in Slot 6.

 

Als letztes zeigen wir noch das Starten einer Konsole für eine LPAR:

$ lpar console lpar02

Open in progress 

 Open Completed.

…

AIX Version 7

Copyright IBM Corporation, 1982, 2018.

Console login:

…

Die Konsole kann mit „~.“ beendet werden.

 

Natürlich kann das LPAR-Tool noch viel mehr.

Fortsetzung folgt.