Virtual FC Adapter and NPIV

Physical FC port with Virtual FC and NPIV

One possibility for the virtualization of storage under PowerVM is the use of virtual FC adapters. A virtual FC client adapter is connected to a virtual FC server adapter on a virtual I/O server via the POWER Hypervisor, as shown in figure 7.10. On the virtual I/O server, the virtual FC server adapter is then connected to one of the physical FC ports (mapping). Each of the connected virtual FC server adapters can log into the FC fabric of its own. Each virtual FC server adapter is assigned its own 24-bit FC address.

Communication path of the virtual FC client adapter to the SAN LUN.
Figure 7.10: Communication path of the virtual FC client adapter to the SAN LUN.

The advantage of virtual FC is that each virtual FC client adapter has its own N_Port and can therefore communicate directly with the storage in the FC fabric. The storage LUNs can be assigned directly to the virtual FC client adapter, without having to map each LUN individually on the virtual I/O server. The virtual I/O server itself, normally does not see the storage LUNs of the virtual FC clients. This makes administration much easier than with virtual SCSI, where each storage LUN has to be mapped on the virtual I/O server to a virtual SCSI server adapter (see next chapter).

Before a virtual FC adapter is created and mapped, the situation on a virtual I/O server is as shown in figure 7.11. The physical FC port is connected to a FC fabric and therefore configures an N_Port. The physical FC port logs into the fabric (FLOGI) and is assigned the unique N_Port ID 8c8240. The FC port then registers its WWPN (here 10:00:00:10:9b:ab:01:02) with the simple name server (SNS) of the fabric (PLOGI). The virtual I/O server can then communicate with other N_Ports in the fabric using the fcs0 device.

Physical FC port without virtual FC and NPIV
Figure 7.11: Physical FC Port without Virtual FC and NPIV

N_Port-ID virtualization or NPIV for short is an extension of the FC standard and allows more than one N_Port to log into the fabric using the same physical FC port. In principle, this option has always existed, but only in connection with FC Arbitrated Loop (FC-AL) and fabrics. With NPIV, multiple client LPARs can share a physical FC port. Each client has its own unique N_Port.

Figure 7.12 shows the situation with 2 virtual FC client adapters. Each of the client adapters has a unique WWPN. The WWPN is assigned by PowerVM when the virtual FC client adapter is created (in order to be able to support live partition mobility, 2 WWPNs are always assigned, whereby only one of the two WWPNs is active). Each virtual FC client adapter requires a partner adapter on a virtual I/O server, the virtual FC server adapter (or vfchost). One of the physical FC ports must be assigned to the virtual FC server adapter on the virtual I/O server. If the client LPAR is active, the virtual FC server adapter logs into the fabric (FDISC) and is assigned a unique N_Port ID. In the figure it is the 8c8268 for the blue adapter and the 8c8262 for the red adapter. Then the blue adapter registers its client WWPN (here c0:50:76:07:12:cd:00:16) with the simple name server (SNS) of the fabric (PLOGI). The red adapter does the same for its client WWPN (here c0:50:76:07:12:cd:00:09). Both virtual FC client adapters then have an N_Port with a unique 24-bit ID and can thus communicate with other N_Ports in the fabric.

Physical FC port with Virtual FC and NPIV
Figure 7.12: Physical FC port with Virtual FC and NPIV

The data is of course not copied between the virtual FC client adapter and the virtual FC server adapter by the hypervisor, as this would cost too much performance. The hypervisor only forwards the physical memory address at which the data is located and the physical FC port then uses DMA (Direct Memory Access) to access this data.

LPAR-Tool 1.6.0.0 is available now

Version 1.6.0.0 of our LPAR tool is now available in our download area!

New features are:

  • Online monitoring of SEA client statistics (vios help seastat)
  • Online monitoring of virtual FC client adapters (vios help fcstat)
  • Display of historical processor and memory data (lpar help lsmem, lpar help lsproc)

In the article Monitoring SEA Traffic the possibilities of calling up SEA client statistics are shown.

FC NPIV client throughput

When using NPIV, multiple client LPARs share a physical FC port of a virtual I/O server. Of course, for performance investigations, it would be nice to be able to easily determine the throughput of each client LPAR and to look at the througputs comparatively. Thus, questions like

  • how much throughput is achieved by a particular LPAR
  • which LPARs have the highest throughput and produce the most FC traffic
  • are there resource bottlenecks

could be answered.

Of course, there are several ways to gain this data. A particularly simple option is provided by the virtual I/O server via the padmin command ‘fcstat‘. The command allows to show NPIV client statistics, using the ‘-client‘ option:

(0)padmin@aixvio1:/home/padmin> fcstat -client
              hostname   dev                wwpn     inreqs    outreqs ctrlreqs          inbytes         outbytes  DMA_errs Elem_errs Comm_errs

               aixvio1  fcs0  0x100000XXXXXXXXXX 49467894179 50422150679 947794529 1861712755360927 1451335312750576         0         0         0
     C050760YYYYYYYYY
                                    0          0        0                0                0         0         0         0
     C050760ZZZZZZZZZ
                                    0          0        0                0                0         0         0         0
                 aix01  fcs0  0xC050760XXXXXXXXX   22685402  101956075 10065757     699512617896    1572578056704         0         0         0
                 aix02  fcs0  0xC050760XXXXXXXXX   28200473   82295158 12051365     387847746448     626772151808         0         0         0
                 aix03  fcs0  0xC050760XXXXXXXXX  376500672  255163053 21583628   22619424512608    3786990844928         0         0         0
                 aix04  fcs0  0xC050760XXXXXXXXX  116450405  504688524 14020031    4037786527400    9929289617408         0         0         0
          blbprodora22  fcs0  0xC050760XXXXXXXXX 1341092479  580673554 37458927   44288566807072   12166718497792         0         0         0
...
               aixvio1  fcs1  0x100000XXXXXXXXXX  391131484 1090556094 156294130   71031615240217   87642294572864         0         0         0
              aixtsm01  fcs2  0xC050760XXXXXXXXX  334020900  785597352 74659821   62072552942128   83284555980288         0         0         0
              aixtsm02  fcs0  0xC050760XXXXXXXXX    2943054   40921231 11617552     107317697968     289142333440         0         0         0

               aixvio1  fcs2  0x210000XXXXXXXXXX  403180246 5877180796   236998  105482699300998 1540608710446612         0         0         0
              aixtsm01  fcs6  0xC050760XXXXXXXXX  146492419  392365162    74250   38378099796342  102844775468007         0         0         0
              aixtsm02  fcs2  0xC050760XXXXXXXXX         19     192848       20             1090      50551063184         0         0         0

               aixvio1  fcs3  0x210000XXXXXXXXXX  405673338 7371951499   260575  105969796271246 1932388891128304         0         0         0
              aixtsm02  fcs3  0xC050760XXXXXXXXX          0          0        4                0                0         0         0         0
                 aix02  fcs7  0xC050760XXXXXXXXX      42624 2677470211    34211          2382280  701864613402184         0         0         0
...
Invalid initiator world wide name
Invalid initiator world wide name
(0)padmin@aixvio1:/home/padmin>

The line with WWPN C050760YYYYYYYYY and C050760ZZZZZZZZZ belongs to NPIV adapters of non-activated LPARs. Therefore, only zeros are displayed as counters. For each virtual (NPIV-enabled) FC port of the virtual I/O server, the physical FC port and the NPIV client LPARs are displayed. Based on the bold-marked block, the output will be briefly described here. First, the physical port of the virtual I/O server is always shown, here aixvio1 and FC port fcs1. In the following lines, the NPIV clients will be shown, each with the LPAR name and the associated virtual FC port of the LPAR, here aixtsm01 and aixtsm02. The virtual FC ports of the LPARs fcs2 (aixtsm01) and fcs0 (aixtsm02) are mapped to the physical FC port fcs1 of aixvio1. After a blank line comes the next physical FC port of the virtual I/O server.

The WWPN of the physical or virtual FC ports are listed in the columns. In addition, the number of incoming and outgoing requests, as well as the transferred bytes, also incoming and outgoing, are listed. Errors are listed in the 3 remaining columns. If there is no DMA buffer available for a request, DMA_errs is incremented, if the queue of the FC adapter is full, Elem_errs is incremented, in the case of transmission errors, Comm_errs is incremented. Regular increasing counters on DMA_errs or Elem_errs may be an indication of too small values for some tuning attributes.

Due to the length of the output and the absolute counters being output, the output is somewhat confusing. But with a small script, you can easily calculate delta values and scale the output to MB per second. With the following example script we have done this:

$ cat npivstat
#! /bin/ksh93
#
# Copyright (c) 2019 by PowerCampus 01 GmbH
# Author: Dr. Armin Schmidt
#

delta=5 # seconds

typeset -A dataInreqs
typeset -A dataOutreqs
typeset -A dataInbytes
typeset -A dataOutbytes
typeset -A dataDMA_errs
typeset -A dataElem_errs
typeset -A dataComm_errs

bc |& # start bc as coroutine
print -p "scale=2"

# get first sample

/usr/ios/cli/ioscli fcstat -client 2>/dev/null | \
while read hostname dev wwpn inreqs outreqs ctrlreqs inbytes outbytes DMA_errs Elem_errs Comm_errs rest
do
case "$wwpn" in
0x*)
dataInreqs[${hostname}_${dev}]=$inreqs
dataOutreqs[${hostname}_${dev}]=$outreqs
dataInbytes[${hostname}_${dev}]=$inbytes
dataOutbytes[${hostname}_${dev}]=$outbytes
dataDMA_errs[${hostname}_${dev}]=$DMA_errs
dataElem_errs[${hostname}_${dev}]=$Elem_errs
dataComm_errs[${hostname}_${dev}]=$Comm_errs
;;
esac
done
sleep $delta

while true
do
/usr/ios/cli/ioscli fcstat -client 2>/dev/null | \
while read hostname dev wwpn inreqs outreqs ctrlreqs inbytes outbytes DMA_errs Elem_errs Comm_errs rest
do
case "$wwpn" in
0x*)
prevInreqs=${dataInreqs[${hostname}_${dev}]}
prevOutreqs=${dataOutreqs[${hostname}_${dev}]}
prevInbytes=${dataInbytes[${hostname}_${dev}]}
prevOutbytes=${dataOutbytes[${hostname}_${dev}]}
prevDMA_errs=${dataDMA_errs[${hostname}_${dev}]}
prevElem_errs=${dataElem_errs[${hostname}_${dev}]}
prevComm_errs=${dataComm_errs[${hostname}_${dev}]}
dataInreqs[${hostname}_${dev}]=$inreqs
dataOutreqs[${hostname}_${dev}]=$outreqs
dataInbytes[${hostname}_${dev}]=$inbytes
dataOutbytes[${hostname}_${dev}]=$outbytes
dataDMA_errs[${hostname}_${dev}]=$DMA_errs
dataElem_errs[${hostname}_${dev}]=$Elem_errs
dataComm_errs[${hostname}_${dev}]=$Comm_errs

print -p "(${inreqs}-${prevInreqs})/$delta"
read -p inreqs
print -p "(${outreqs}-${prevOutreqs})/$delta"
read -p outreqs
print -p "(${inbytes}-${prevInbytes})/${delta}/1024/1024"
read -p inbytes
print -p "(${outbytes}-${prevOutbytes})/${delta}/1024/1024"
read -p outbytes
print -p "(${DMA_errs}-${prevDMA_errs})/$delta"
read -p DMA_errs
print -p "(${Elem_errs}-${prevElem_errs})/$delta"
read -p Elem_errs
print -p "(${Comm_errs}-${prevComm_errs})/$delta"
read -p Comm_errs

printf "%15s %5s %16s %6.2f %7.2f %7.2f %8.2f %8.2f %9.2f %9.2f\n" "$hostname" "$dev" "$wwpn" "$inreqs" "$outreqs" \
"$inbytes" "$outbytes" "$DMA_errs" "$Elem_errs" "$Comm_errs"
;;
"wwpn")
printf "%15s %5s %16s %6s %7s %7s %8s %8s %9s %9s\n" "$hostname" "$dev" "$wwpn" "$inreqs" "$outreqs" \
"$inbytes" "$outbytes" "$DMA_errs" "$Elem_errs" "$Comm_errs"
;;
"")
[ -n "$hostname" ] && continue
printf "%15s %5s %16s %6s %7s %7s %8s %8s %9s %9s\n" "$hostname" "$dev" "$wwpn" "$inreqs" "$outreqs" \
"$inbytes" "$outbytes" "$DMA_errs" "$Elem_errs" "$Comm_errs"
;;
esac
done
print

sleep $delta
done

$

The script ‘npivstat‘ is available for download in our download-area.

Here is an excerpt from a run of the script (much shortened, only one of the physical ports is shown):

aixvio1 # ./npivstat
       hostname    dev              wwpn  inreqs  outreqs  inbytes  outbytes  DMA_errs  Elem_errs  Comm_errs
...                                                                                                          
        aixvio1   fcs2  0x210000XXXXXXXXXX    0.00  1019.00     0.00    254.75      0.00       0.00       0.00
       aixtsm01   fcs6  0xC0507605E5890074    0.00     0.00     0.00      0.00      0.00       0.00       0.00
       aixtsm02   fcs2  0xC0507609A6C70004    0.00     0.00     0.00      0.00      0.00       0.00       0.00
          aix05   fcs6  0xC0507609A6C7001C    0.00  1018.20     0.00    254.55      0.00       0.00       0.00
...                                                                                                          
        aixvio1   fcs2  0x210000XXXXXXXXXX    0.00  1020.20     0.00    255.05      0.00       0.00       0.00
       aixtsm01   fcs6  0xC050760XXXXXXXXX    0.00     0.00     0.00      0.00      0.00       0.00       0.00
       aixtsm02   fcs2  0xC050760XXXXXXXXX    0.00     0.00     0.00      0.00      0.00       0.00       0.00
          aix05   fcs6  0xC050760XXXXXXXXX    0.00  1019.80     0.00    254.95      0.00       0.00       0.00
...                                                                                                           
        aixvio1   fcs2  0x210000XXXXXXXXXX    0.00   984.80     0.00    246.20      0.00       0.00       0.00
       aixtsm01   fcs6  0xC050760XXXXXXXXX    0.00     0.00     0.00      0.00      0.00       0.00       0.00
       aixtsm02   fcs2  0xC050760XXXXXXXXX    0.00     0.00     0.00      0.00      0.00       0.00       0.00
          aix05   fcs6  0xC050760XXXXXXXXX    0.00   985.00     0.00    246.25      0.00       0.00       0.00
...
^Caixvio1 # 

In the example above, the NPIV client aix05 generates approximately 250 MB/s of data, while the other two NPIV clients aixtsm01 and aixtsm02 have not produced FC traffic during this time.

The script must be started as root on a virtual I/O server. Of course you can customize the script to your own needs.

Which FC port is connected to which SAN fabric?

In larger environments with many managed systems and multiple SAN fabrics, it’s not always clear which SAN fabric an FC port belongs to despite good documentation. In many cases, the hardware is far from the screen, possibly even in a very different building or geographically farther away, so you can not just check the wiring on site.

This blog post will show you how to use Live Partition Mobility (LPM) to find all the FC ports that belong to a given SAN fabric.

We use the LPAR tool for the sake of simplicity, but you can also work with commands from the HMC CLI without the LPAR tool, so please continue reading even if the LPAR tool is not available!

In the following, we have named our SAN fabrics “Fabric1” and “Fabric2.” However, the procedure described below can be used with any number of SAN fabrics.

Since LPM is to be used, we first need an LPAR. We create the LPAR on one of our managed systems (ms09) with the LPAR tool:

$ lpar –m ms09 create fabric1
Creating LPAR fabric1:
done
Register LPAR
done
$

Of course you can also use the HMC GUI or the HMC CLI to create the LPAR. We named the new LPAR after our SAN Fabric “fabric1“. Every other name is just as good!

Next, our LPAR needs a virtual FC adapter mapped to an FC port of fabric “Fabric1“:

$ lpar –p standard addfc fabric1 10 ms09-vio1
fabric1 10 ms09-vio1 20
$

The LPAR tool has selected slot 20 for the VFC server adapter on VIOS ms09-vio1 and created the client adapter as well as the server adapter. Of course, client and server adapters can be created in exactly the same way via the HMC GUI or the HMC CLI. Since the LPAR is not active, the ‘-p standard‘ option specified that only the profile should be adjusted.

To map the VFC server adapter to a physical FC port, we need the vfchost adapter number on the VIOS ms09-vio1:

$ vios npiv ms09-vio1
VIOS       ADAPT NAME  SLOT  CLIENT OS      ADAPT   STATUS        PORTS
…
ms09-vio1  vfchost2    C20   (3)    unknown  -     NOT_LOGGED_IN  0
…
$

In slot 20 we have the vfchost2, so this must now be mapped to an FC port of fabric “Fabric1“. We map to the FC port fcs8, which we know to belong to fabric “Fabric1“. If we are wrong, we will see this shortly.

Let’s take a look at the WWPNs for the virtual FC Client Adapter:

$ lpar -p standard vslots fabric1
SLOT  REQ  TYPE           DATA
0     yes  serial/server  remote: (any)/any hmc=1
1     yes  serial/server  remote: (any)/any hmc=1
10    no   fc/client      remote: ms09-vio1(1)/20 c050760XXXXX00b0,c050760XXXXX00b1
$

Equipped with the WWPNs, we now ask our storage colleagues to create a small LUN for these WWPNs, which should only be visible in the fabric “Fabric1“. After the storage colleagues have created the LUN and adjusted the zoning accordingly, we activate our new LPAR in OpenFirmware mode and open a console:

$ lpar activate –p standard –b of fabric1

$ lpar console fabric1

Open in progress 

Open Completed.

IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM
...

          1 = SMS Menu                          5 = Default Boot List
          8 = Open Firmware Prompt              6 = Stored Boot List

     Memory      Keyboard     Network     SCSI     Speaker  ok
0 >

Of course, this is also possible without problems with GUI or HMC CLI.

In OpenFirmware mode we start ioinfo and check if the small LUN is visible. If it is not visible, then the FC port fcs8 does not belong to the right fabric!

0 > ioinfo

!!! IOINFO: FOR IBM INTERNAL USE ONLY !!!
This tool gives you information about SCSI,IDE,SATA,SAS,and USB devices attached to the system

Select a tool from the following

1. SCSIINFO
2. IDEINFO
3. SATAINFO
4. SASINFO
5. USBINFO
6. FCINFO
7. VSCSIINFO

q - quit/exit

==> 6

FCINFO Main Menu
Select a FC Node from the following list:
 # Location Code           Pathname
-------------------------------------------------
 1. U9117.MMC.XXXXXXX7-V10-C10-T1  /vdevice/vfc-client@3000000a

q - Quit/Exit

==> 1

FC Node Menu
FC Node String: /vdevice/vfc-client@3000000a
FC Node WorldWidePortName: c050760XXXXXX0016
------------------------------------------
1. List Attached FC Devices
2. Select a FC Device
3. Enable/Disable FC Adapter Debug flags

q - Quit/Exit

==> 1

1. 500507680YYYYYYY,0 - 10240 MB Disk drive

Hit a key to continue...

FC Node Menu
FC Node String: /vdevice/vfc-client@3000000a
FC Node WorldWidePortName: c050760XXXXXX0016
------------------------------------------
1. List Attached FC Devices
2. Select a FC Device
3. Enable/Disable FC Adapter Debug flags

q - Quit/Exit

==> q

The LUN appears, the WWPN 500507680YYYYYYY is the WWPN of the corresponding storage port, which is unique worldwide and can only be seen in the fabric “Fabric1“!

Activating the LPAR in OpenFirmware mode has served two purposes, firstly to verify that the LUN is visible and our mapping to fcs8 was correct, secondly, the system now has the information which WWPNs need to be found during an LPM operation, so that the LPAR can be moved!

We deactivate the LPAR again.

$ lpar shutdown –f fabric1
$

If we now perform an LPM validation on the inactive LPAR, then a validation can only be successful on a managed system that has a virtual I/O server with a connection to the fabric “Fabric1“. Using a for loop, let’s try that for some managed systems:

$ for ms in ms10 ms11 ms12 ms13 ms14 ms15 ms16 ms17 ms18 ms19
do
echo $ms
lpar validate fabric1 $ms >/dev/null 2>&1
if [ $? -eq 0 ]
then
   echo connected
else
   echo not connected
fi
done

The command to validate on the HMC CLI is, migrlpar,.

Since we are not interested in validation messages, we redirect all validation messages to /dev/null.

Here’s the output of the for loop:

ms10
connected
ms11
connected
ms12
connected
ms13
connected
ms14
connected
ms15
connected
ms16
connected
ms17
connected
ms18
connected
ms19
connected

Obviously, all managed systems are connected to fabric “Fabric1“. That’s not very surprising, because they were cabled exactly like that.

It would be more interesting to know which FC port on the managed systems (Virtual I/O servers) are connected to the fabric “Fabric1“. To do this, we need a list of virtual I/O servers for each managed system and the list of NPIV-capable FC ports for each virtual I/O server.

The list of virtual I/O servers can be obtained easily with the following command:

$ vios -m ms11 list
ms11-vio1
ms11-vio2
$

On the HMC CLI you can use the command: lssyscfg -r lpar -m ms11 -F “name lpar_env”.

The NPIV-capable ports can be found out with the following command:

$ vios lsnports ms11-vio1
ms11-vio1       name             physloc                        fabric tports aports swwpns  awwpns
ms11-vio1       fcs0             U78AA.001.XXXXXXX-P1-C5-T1          1     64     60   2048    1926
ms11-vio1       fcs1             U78AA.001.XXXXXXX-P1-C5-T2          1     64     60   2048    2023
...
$

The command lsnports is used on the virtual I/O server. Of course you can do this without the LPAR tool.

With the LPM validation (and of course also with the migration) one can indicate which FC port on the target system is to be used, we show this here once with two examples:

$ lpar validate fabric1 ms10 virtual_fc_mappings=10/ms10-vio1///fcs0 >/dev/null 2>&1
$ echo $?
0
$ lpar validate fabric1 ms10 virtual_fc_mappings=10/ms10-vio1///fcs1 >/dev/null 2>&1
$ echo $?
1
$

The validation with target ms10-vio1 and fcs0 was successful, i.e. this FC port is attached to fabric “Fabric1“. The validation with targets ms10-vio1 and fcs1 was not successful, i.e. that port is not connected to the fabric “Fabric1“.

Here is the command that must be called on the HMC, if the LPAR tool is not used:

$ lpar -v validate fabric1 ms10 virtual_fc_mappings=10/ms10-vio1///fcs0
hmc02: migrlpar -m ms09 -o v -p fabric1 -t ms10 -v -d 5 -i 'virtual_fc_mappings=10/ms10-vio1///fcs0'
$

To find out all the FC ports that are connected to the fabric “Fabric1“, we need to loop through the managed systems to be checked, for each managed system we then need a loop across all VIOS of the managed system and finally a loop over each FC ports of the VIOS performing an LPM validation.

We have put things together in the following script. To make sure that it does not get too long, we have omitted some checks:

$ cat bin/fabric_ports
#! /bin/ksh
# Copyright © 2018, 2019 by PowerCampus 01 GmbH

LPAR=fabric1

STATE=$( lpar prop -F state $LPAR | tail -1 )

print "LPAR: $LPAR"
print "STATE: $STATE"

if [ "$STATE" != "Not Activated" ]
then
            print "ERROR: $LPAR must be in state 'Not Activated'"
            exit 1
fi

fcsCount=0
fcsSameFabricCount=0

for ms in $@
do
            print "MS: $ms"
            viosList=$( vios -m $ms list )

            for vios in $viosList
            do
                        rmc_state=$( lpar -m $ms prop -F rmc_state $vios | tail -1 )
                        if [ "$rmc_state" = "active" ]
                        then
                                    fcList=
                                    vios -m $ms lsnports $vios 2>/dev/null | \
                                    while read vio fcport rest
                                    do
                                               if [ "$fcport" != "name" ]
                                               then
                                                           fcList="${fcList} $fcport"
                                               fi
                                    done

                                    for fcport in $fcList
                                    do
                                               print -n "${vios}: ${fcport}: "
                                               lpar validate $LPAR $ms virtual_fc_mappings=10/${vios}///${fcport} </dev/null >/dev/null 2>&1
                                               case "$?" in
                                               0)
                                                           print "yes"
                                                           fcsSameFabricCount=$( expr $fcsSameFabricCount + 1 )
                                                           ;;
                                               *) print "no" ;;
                                               esac
                                               fcsCount=$( expr $fcsCount + 1 )
                                    done
                        else
                                    print "${vios}: RMC not active"
                        fi
            done
done

print "${fcsCount} FC-ports investigated"
print "${fcsSameFabricCount} FC-ports in same fabric"

$

As an illustration we briefly show a run of the script over some managed systems. We start the script with time to see how long it takes:

$ time bin/fabric_ports ms10 ms11 ms12 ms13 ms14 ms15 ms16 ms17 ms18 ms19
LPAR: fabric1
STATE: Not Activated
MS: ms10
ms10-vio3: RMC not active
ms10-vio1: fcs0: yes
ms10-vio1: fcs2: yes
ms10-vio1: fcs4: no
ms10-vio1: fcs6: no
ms10-vio2: fcs0: yes
ms10-vio2: fcs2: yes
ms10-vio2: fcs4: no
ms10-vio2: fcs6: no
MS: ms11
ms11-vio3: RMC not active
ms11-vio1: fcs0: no
ms11-vio1: fcs1: no
ms11-vio1: fcs2: no
ms11-vio1: fcs3: yes
ms11-vio1: fcs4: no
…
ms19-vio2: fcs2: no
ms19-vio2: fcs3: no
ms19-vio2: fcs0: no
ms19-vio2: fcs1: no
ms19-vio2: fcs4: no
ms19-vio2: fcs5: no
132 FC-ports investigated
17 FC-ports in same fabric

real       2m33.978s
user      0m4.597s
sys       0m8.137s
$

In about 150 seconds, 132 FC ports were examined (LPM validations performed). This means a validation took about 1 second on average.

We have found all the FC ports that are connected to the fabric “Fabric1“.

Of course, this can be done analogously for other fabrics.

A final note: not all ports above are cabled!