Monitoring virtual FC Client Traffic

With the LPAR tool, statistics for all virtual FC clients can be displayed at any time using the “vios fcstat” command. This allows you to determine at any time which client LPARs have which I/O throughput (when using NPIV).

Which NPIV-capable FC adapters are available on a virtual I/O server can easily be found out with “vios lsnports“:

$ vios lsnports ms15-vio1
NAME  PHYSLOC                     FABRIC  TPORTS  APORTS  SWWPNS  AWWPNS
fcs0  U78CB.001.XXXXXXX-P1-C5-T1  1       64      62      2032    2012
fcs1  U78CB.001.XXXXXXX-P1-C5-T2  1       64      62      2032    2012
fcs2  U78CB.001.XXXXXXX-P1-C5-T3  1       64      61      2032    1979
fcs3  U78CB.001.XXXXXXX-P1-C5-T4  1       64      61      2032    1979
fcs4  U78CB.001.XXXXXXX-P1-C3-T1  1       64      50      3088    3000
fcs5  U78CB.001.XXXXXXX-P1-C3-T2  1       64      63      3088    3077
$

We display the FC client statistics with the command “vios fcstat”. By default, the data for all virtual FC clients of the specified virtual I/O server are shown every 10 seconds:

$ vios fcstat ms15-vio1
HOSTNAME   PHYSDEV  WWPN                DEV    INREQS    INBYTES      OUTREQS    OUTBYTES     CTRLREQS
ms15-vio1  fcs1     0x210000XXXXX56EC5  fcs1   774.75/s  129.51 MB/s  1332.71/s   92.96 MB/s  20
aixtsmp1   fcs2     0xC050760XXXXX0058  fcs6   318.10/s   83.39 MB/s  481.34/s   126.18 MB/s  0
ms15-vio1  fcs2     0x210000XXXXX56EC6  fcs2   318.10/s   83.39 MB/s  480.78/s   126.03 MB/s  0
aixtsmp1   fcs5     0xC050760XXXXX003E  fcs0   583.98/s   60.35 MB/s  1835.17/s  124.86 MB/s  0
ms15-vio1  fcs5     0x10000090XXXXX12D  fcs5   583.70/s   60.27 MB/s  1836.21/s  124.92 MB/s  0
ms15-vio1  fcs0     0x21000024XXXXXEC4  fcs0   923.19/s  165.08 MB/s  1032.81/s   17.25 MB/s  46
aixtsmp3   fcs1     0xC050760XXXXX00E4  fcs0   775.12/s  129.48 MB/s  1047.32/s   17.15 MB/s  20
aixtsmp3   fcs0     0xC050760XXXXX00DE  fcs1   775.78/s  128.99 MB/s  1037.99/s   17.39 MB/s  20
aixtsmp1   fcs1     0xC050760XXXXX0056  fcs5     0.00/s    0.00 B/s   290.39/s    76.12 MB/s  0
aixtsmp1   fcs0     0xC050760XXXXX0052  fcs4   142.89/s   36.12 MB/s    0.00/s     0.00 B/s   26
ms15-vio1  fcs4     0x10000090XXXXX12C  fcs4   234.97/s    4.58 MB/s  621.78/s    11.12 MB/s  40
cus1dbp01  fcs4     0xC050760XXXXX0047  fcs0   243.55/s    5.05 MB/s  432.33/s     9.95 MB/s  0
cus1dbi01  fcs4     0xC050760XXXXX0044  fcs1     0.94/s   10.42 KB/s   87.28/s   459.26 KB/s  0
...
HOSTNAME   PHYSDEV  WWPN                DEV    INREQS     INBYTES      OUTREQS    OUTBYTES     CTRLREQS
aixtsmp1   fcs5     0xC050760XXXXX003E  fcs0   1772.84/s  162.24 MB/s  1309.30/s   70.60 MB/s  68
ms15-vio1  fcs5     0x10000090XXXXX12D  fcs5   1769.13/s  161.95 MB/s  1305.60/s   70.54 MB/s  68
ms15-vio1  fcs1     0x21000024XXXXXEC5  fcs1   883.55/s   118.97 MB/s  1551.97/s  108.78 MB/s  43
ms15-vio1  fcs2     0x21000024XXXXXEC6  fcs2   201.09/s    52.72 MB/s  497.26/s   130.35 MB/s  0
aixtsmp1   fcs2     0xC050760XXXXX0058  fcs6   201.09/s    52.72 MB/s  495.40/s   129.87 MB/s  0
ms15-vio1  fcs0     0x21000024XXXXXEC4  fcs0   923.54/s   128.89 MB/s  1234.98/s   23.31 MB/s  65
aixtsmp3   fcs0     0xC050760XXXXX00DE  fcs1   876.93/s   118.93 MB/s  1234.98/s   23.32 MB/s  44
aixtsmp3   fcs1     0xC050760XXXXX00E4  fcs0   884.17/s   119.07 MB/s  1223.50/s   23.00 MB/s  43
aixtsmp1   fcs1     0xC050760XXXXX0056  fcs5     0.00/s     0.00 B/s   325.83/s    85.41 MB/s  0
...
^C
$

The LPAR name, the physical FC port (PHYSDEV) on the virtual I/O server, the WWPN of the client adapter, the virtual FC client port (DEV), as well as the number of requests (INREQS and OUTREQS) and thereby transferred bytes (INBYTES and OUTBYTES). The transfer rates are output in KB/s, MB/s or GB/s. The output can be very long on larger systems! The output is sorted according to throughput, i.e. the most active virtual client adapters are output first. With the option ‘-t‘ (top) the output can be restricted to a desired number of data records: e.g. with ‘-t 10‘ only the top ten adapters with the highest throughput are shown. In addition, the interval length (in seconds) can be specified via a further argument, here is a short example:

$ vios fcstat -t 10 ms15-vio1 2
HOSTNAME   PHYSDEV  WWPN                DEV   INREQS     INBYTES      OUTREQS    OUTBYTES     CTRLREQS
ms15-vio1  fcs1     0x21000024XXXXXEC5  fcs1  1034.58/s   86.56 MB/s  2052.23/s  160.11 MB/s  20
ms15-vio1  fcs5     0x10000090XXXXX12D  fcs5  1532.63/s  115.60 MB/s  1235.72/s  118.32 MB/s  40
aixtsmp1   fcs5     0xC050760XXXXX003E  fcs0  1510.33/s  114.88 MB/s  1236.49/s  118.27 MB/s  40
aixtsmp3   fcs1     0xC050760XXXXX00E4  fcs0  1036.11/s   86.67 MB/s  1612.25/s   44.86 MB/s  20
aixtsmp3   fcs0     0xC050760XXXXX00DE  fcs1  1031.50/s   86.29 MB/s  1588.02/s   44.27 MB/s  20
ms15-vio1  fcs0     0x21000024XXXXXEC4  fcs0  1029.58/s   86.31 MB/s  1567.63/s   43.65 MB/s  20
aixtsmp1   fcs1     0xC050760XXXXX0056  fcs5    0.00/s     0.00 B/s   436.52/s   114.43 MB/s  0
ms15-vio1  fcs2     0x21000024XXXXXEC6  fcs2    0.00/s     0.00 B/s   435.75/s   114.23 MB/s  0
aixtsmp1   fcs2     0xC050760XXXXX0058  fcs6    0.00/s     0.00 B/s   432.68/s   113.42 MB/s  0
ms15-vio1  fcs4     0x10000090XXXXX12C  fcs4  144.99/s     0.78 MB/s  478.83/s     2.22 MB/s  46
HOSTNAME   PHYSDEV  WWPN                DEV   INREQS    INBYTES      OUTREQS    OUTBYTES     CTRLREQS
aixtsmp1   fcs5     0xC050760XXXXX003E  fcs0  758.14/s   35.55 MB/s  1822.99/s  112.60 MB/s  0
ms15-vio1  fcs5     0x10000090XXXXX12D  fcs5  757.38/s   35.52 MB/s  1821.46/s  112.59 MB/s  0
ms15-vio1  fcs0     0x21000024XXXXXEC4  fcs0  944.23/s   85.09 MB/s  1657.58/s   41.40 MB/s  2
aixtsmp3   fcs0     0xC050760XXXXX00DE  fcs1  943.47/s   85.15 MB/s  1636.90/s   40.68 MB/s  2
ms15-vio1  fcs1     0x21000024XXXXXEC5  fcs1  949.21/s   84.88 MB/s  1586.74/s   39.41 MB/s  2
aixtsmp3   fcs1     0xC050760XXXXX00E4  fcs0  946.53/s   84.64 MB/s  1584.83/s   39.40 MB/s  2
ms15-vio1  fcs4     0x10000090XXXXX12C  fcs4   39.44/s  449.92 KB/s  676.97/s     3.63 MB/s  10
cus1dbp01  fcs4     0xC050760XXXXX0047  fcs0   29.10/s  471.69 KB/s  310.92/s     1.28 MB/s  4
cus1mqp01  fcs4     0xC050760XXXXX002C  fcs0    1.91/s    4.71 KB/s  230.12/s     1.66 MB/s  0
cus2orap01 fcs4     0xC050760XXXXX000F  fcs0    0.77/s    4.31 KB/s   48.25/s   263.49 KB/s  0
^C
$

The option ‘-s‘ (select) can be used to select and show only data records from a specific client (‘-s hostname = aixtsmp1‘) or only data records from a specific physical port (‘-s physdev = fcs1‘):

$ vios fcstat -s hostname=aixtsmp1 ms15-vio1 2
HOSTNAME  PHYSDEV  WWPN                DEV   INREQS     INBYTES      OUTREQS    OUTBYTES     CTRLREQS
aixtsmp1  fcs5     0xC050760XXXXX003E  fcs0  1858.72/s   51.14 MB/s  1231.82/s  104.20 MB/s  0
aixtsmp1  fcs2     0xC050760XXXXX0058  fcs6    6.94/s     1.82 MB/s    6.94/s     1.82 MB/s  0
aixtsmp1  fcs4     0xC050760XXXXX0042  fcs2    0.39/s     1.19 KB/s    0.39/s   395.05 B/s   0
aixtsmp1  fcs1     0xC050760XXXXX0056  fcs5    0.39/s     7.72 B/s     0.00/s     0.00 B/s   1
aixtsmp1  fcs0     0xC050760XXXXX0052  fcs4    0.00/s     0.00 B/s     0.00/s     0.00 B/s   0
aixtsmp1  fcs3     0xC050760XXXXX005A  fcs7    0.00/s     0.00 B/s     0.00/s     0.00 B/s   0
HOSTNAME  PHYSDEV  WWPN                DEV   INREQS     INBYTES      OUTREQS    OUTBYTES     CTRLREQS
aixtsmp1  fcs5     0xC050760XXXXX003E  fcs0  1760.48/s  111.48 MB/s  1125.70/s   95.20 MB/s  0
aixtsmp1  fcs2     0xC050760XXXXX0058  fcs6    8.53/s     2.24 MB/s  484.61/s   127.04 MB/s  0
aixtsmp1  fcs1     0xC050760XXXXX0056  fcs5    0.00/s     0.00 B/s   469.04/s   122.96 MB/s  0
aixtsmp1  fcs4     0xC050760XXXXX0042  fcs2    0.37/s     1.14 KB/s    0.00/s     0.00 B/s   0
aixtsmp1  fcs0     0xC050760XXXXX0052  fcs4    0.00/s     0.00 B/s     0.00/s     0.00 B/s   0
aixtsmp1  fcs3     0xC050760XXXXX005A  fcs7    0.00/s     0.00 B/s     0.00/s     0.00 B/s   0
^C
$

With the “vios fcstat” command, FC throughput of any LPAR can be shown at any time in an extremely simple way, at the push of a button, so to speak.

If the intervals are smaller, the accuracy of the displayed values suffers. At 2 second intervals the inaccuracy is approx. 10%. However, the relationship between the displayed values is still correct.

The “label” Attribute for FC Adapters

As of AIX 7.2 TL4 and VIOS 3.1.1.10 there is a new attribute “label” for physical FC adapters. The administrator can set this attribute to any character string (maximum 255 characters). Even if the attribute is only informative, it can be extremely useful in PowerVM virtualization environments. If you have a large number of managed systems, it is not always clear to which FC fabric a certain FC port is connected. This can of course be looked up in the documentation of your systems, but it does involve a certain amount of effort. It is easier if you link this information directly with the FC adapters, which is exactly what the new “label” attribute allows in a simple way. On AIX:

# chdev -l fcs0 -U -a label="Fabric_1"
fcs0 changed
# lsattr -El fcs0 -a label -F value
Fabric_1
#

On virtual I/O servers, the attribute can also be set using the padmin account:

/home/padmin> chdev -dev fcs1 -attr label="Fabric_2" -perm
fcs1 changed
/home/padmin> lsdev -dev fcs1 -attr label                
value

Fabric_2
/home/padmin>

The attribute is also defined for older FC adapters.

If the “label” attribute is consistently used, it is always possible to determine online for each FC adapter to which fabric the adapter is connected to. This information only needs to be stored once for each FC adapter.

(Note: The “label” attribute is not implemented for AIX 7.1, at least not until 7.1 TL5 SP6.)

LPAR-Tool 1.6.0.0 is available now

Version 1.6.0.0 of our LPAR tool is now available in our download area!

New features are:

  • Online monitoring of SEA client statistics (vios help seastat)
  • Online monitoring of virtual FC client adapters (vios help fcstat)
  • Display of historical processor and memory data (lpar help lsmem, lpar help lsproc)

In the article Monitoring SEA Traffic the possibilities of calling up SEA client statistics are shown.

The Impact of FC-Ports without a Link

FC ports that are not used and do not have a link should be deactivated, as these significantly extend the runtime of a series of commands and operations (e.g. LPM).

(Note: our LPAR tool is used in some examples, but the corresponding commands on the HMC or the virtual I / O server are always shown!)

Two 4-port FC adapters are in use on one of our virtual I / O servers (ms26-vio1):

$ lpar lsslot ms26-vio1
DRC_NAME                  DRC_INDEX  IOPOOL  DESCRIPTION
U78D3.001.XXXXXXX-P1-C49  21040015   none    PCIe3 x8 SAS RAID Internal Adapter 6Gb
U78D3.001.XXXXXXX-P1-C7   2103001C   none    PCIe3 4-Port 16Gb FC Adapter
U78D3.001.XXXXXXX-P1-C2   21010021   none    PCIe3 4-Port 16Gb FC Adapter
$
(HMC: lshwres -r io --rsubtype slot -m ms26 --filter lpar_names=ms26-vio1)

However, only 2 ports of the 8 ports are cabled:

$ vios lsnports ms26-vio1
NAME  PHYSLOC                     FABRIC  TPORTS  APORTS  SWWPNS  AWWPNS
fcs0  U78D3.001.XXXXXXX-P1-C2-T1  1       64      64      3072    3072
fcs4  U78D3.001.XXXXXXX-P1-C7-T1  1       64      64      3072    3072
$
(VIOS: lsnports)

When working with the virtual I / O server, it is noticeable, that some of the commands have an unexpectedly long runtime and sometimes hang for a long time. Some example commands are given below, along with the measured runtime:

(0)padmin@ms26-vio1:/home/padmin> time netstat –cdlistats
…
Error opening device: /dev/fscsi1
errno: 00000045

Error opening device: /dev/fscsi2
errno: 00000045

Error opening device: /dev/fscsi3
errno: 00000045

Error opening device: /dev/fscsi5
errno: 00000045

Error opening device: /dev/fscsi6
errno: 00000045

Error opening device: /dev/fscsi7
errno: 00000045

real    1m13.56s
user    0m0.03s
sys     0m0.10s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time lsnports
name             physloc                        fabric tports aports swwpns  awwpns
fcs0             U78D3.001.XXXXXXX-P1-C2-T1          1     64     64   3072    3072
fcs4             U78D3.001.XXXXXXX-P1-C7-T1          1     64     64   3072    3072

real    0m11.61s
user    0m0.01s
sys     0m0.00s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time fcstat fcs1

Error opening device: /dev/fscsi1
errno: 00000045

real    0m11.31s
user    0m0.01s
sys     0m0.01s
(4)padmin@ms26-vio1:/home/padmin>

LPM operations also take significantly longer, since all FC ports are examined when searching for suitable FC ports for the necessary NPIV mappings. This can lead to delays in the range of minutes before the migration is finally started.

In order to avoid these unnecessarily long runtimes, FC ports that are not wired should not be activated. The fscsi device has the attribute autoconfig, with the possible values defined and available. By default, the value available is used, which means that the kernel configures and activates the device, even if it has no link, which leads to the waiting times shown above. If the autoconfig attribute is set to defined, the fscsi device is not activated, it then remains in the defined state.

The following example shows how to reconfigure the fscsi1 device:

$ vios chdev ms26-vio1 fscsi1 autoconfig=defined
$
(VIOS: chdev -dev fscsi1 -attr autoconfig=defined)
$
$ vios rmdev ms26-vio1 fscsi1
$
(VIOS: rmdev -dev fscsi1 –ucfg)
$
$ vios lsdev ms26-vio1 fscsi1
NAME    STATUS   PHYSLOC                     PARENT  DESCRIPTION
fscsi1  Defined  U78D3.001.XXXXXXX-P1-C2-T2  fcs1    FC SCSI I/O Controller Protocol Device
$
(VIOS: lsdev -dev fscsi1)
$
$  vios lsattr ms26-vio1 fscsi1
ATTRIBUTE     VALUE      DESCRIPTION                            USER_SETTABLE
attach        none       How this adapter is CONNECTED          False
autoconfig    defined    Configuration State                    True
dyntrk        yes        Dynamic Tracking of FC Devices         True+
fc_err_recov  fast_fail  FC Fabric Event Error RECOVERY Policy  True+
scsi_id       Adapter    SCSI ID                                False
sw_fc_class   3          FC Class for Fabric                    True
$
(VIOS: lsdev -dev fscsi1 –attr)
$

With the autoconfig=defined attribute, the fscsi device remains defined even when the cfgmgr is run!

If one repeats the runtime measurement of the commands above, one can see that the runtime of the commands has already measurably improved:

(0)padmin@ms26-vio1:/home/padmin> time netstat –cdlistats
…
Error opening device: /dev/fscsi1
errno: 00000005

Error opening device: /dev/fscsi2
errno: 00000045

Error opening device: /dev/fscsi3
errno: 00000045

Error opening device: /dev/fscsi5
errno: 00000045

Error opening device: /dev/fscsi6
errno: 00000045

Error opening device: /dev/fscsi7
errno: 00000045

real    1m1.02s
user    0m0.04s
sys     0m0.10s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time lsnports
name             physloc                        fabric tports aports swwpns  awwpns
fcs0             U78D3.001.XXXXXXX-P1-C2-T1          1     64     64   3072    3072
fcs4             U78D3.001.XXXXXXX-P1-C7-T1          1     64     64   3072    3072

real    0m9.70s
user    0m0.00s
sys     0m0.01s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time fcstat fcs1

Error opening device: /dev/fscsi1
errno: 00000005

real    0m0.00s
user    0m0.02s
sys     0m0.00s
(4)padmin@ms26-vio1:/home/padmin>

The running time of the netstat command was shortened by 12 seconds, the lsnports command was about 2 seconds faster.

We now also set the autoconfig attribute to defined for all other unused FC ports:

$ for fscsi in fscsi2 fscsi3 fscsi5 fscsi6 fscsi7
> do
> vios chdev ms26-vio1 $fscsi autoconfig=defined
> vios rmdev ms26-vio1 $fscsi
> done
$

Now we repeat the runtime measurement of the commands again:

(0)padmin@ms26-vio1:/home/padmin> time netstat –cdlistats
…
Error opening device: /dev/fscsi1
errno: 00000005

Error opening device: /dev/fscsi2
errno: 00000005

Error opening device: /dev/fscsi3
errno: 00000005

Error opening device: /dev/fscsi5
errno: 00000005

Error opening device: /dev/fscsi6
errno: 00000005

Error opening device: /dev/fscsi7
errno: 00000005

real    0m0.81s
user    0m0.03s
sys     0m0.10s
(0)padmin@ms26-vio1:/home/padmin>
(0)padmin@ms26-vio1:/home/padmin> time lsnports         
name             physloc                        fabric tports aports swwpns  awwpns
fcs0             U78D3.001.XXXXXXX-P1-C2-T1          1     64     64   3072    3072
fcs4             U78D3.001.XXXXXXX-P1-C7-T1          1     64     64   3072    3072

real    0m0.00s
user    0m0.01s
sys     0m0.01s
(0)padmin@ms26-vio1:/home/padmin> time fcstat fcs1       

Error opening device: /dev/fscsi1
errno: 00000005

real    0m0.04s
user    0m0.00s
sys     0m0.00s
(4)padmin@ms26-vio1:/home/padmin>

The netstat command now takes less than 1 second, the lsnports command only 0.1 seconds.

It is therefore worthwhile to set the autoconfig attribute for unused FC ports to defined!

 

HSCLB505 The partition cannot use hardware-accelerated encryption

When migrating LPARs using LPM onto a somewhat older hardware, the following error can occur:

HSCLB505 The partition cannot use hardware-accelerated encryption on the destination managed system because the destination managed system does not support hardware-accelerated encryption.

This means that hardware-accelerated encryption is activated for the LPAR, but is not supported on the destination managed system.

Disabling hardware-accelerated encryption using the LPAR-Tool is easy:

$ lpar -d chmem lpar01 hardware_mem_encryption=0
$

Without the LPAR-Tool this is of course also possible. Log into your HMC and use the following command from the commandoline:

chhwres -m ms01 -r mem -o s -p lpar01 -a 'hardware_mem_encryption=0'

Afterwards validation and migration using LPM should work.

HSCLB504 The migrating partition cannot use hardware-accelerated Active Memory Expansion

When migrating LPARs using LPM onto a somewhat older hardware, the following error can occur:

HSCLB504 The migrating partition cannot use hardware-accelerated Active Memory Expansion on the destination managed system because the destination managed system does not support hardware-accelerated Active Memory Expansion.

This means that Active Memory Erweiterung (AME) is activated for the LPAR, but is not supported on the destination managed system.

Disabling Active Memory Expansion using the LPAR-Tool is easy:

$ lpar -d chmem lpar01 hardware_mem_expansion=0
$

Without the LPAR-Tool this is of course also possible. Log into your HMC and use the following command from the commandoline:

chhwres -m ms01 -r mem -o s -p lpar01 -a 'hardware_mem_expansion=0'

Afterwards validation and migration using LPM should work.

WWPN of FC ports in Open Firmware

The following article deals with WWPN of FC ports in Open Firmware.

Port and node WWNs of FC ports can be found very easily in the Open Firmware, even when the ioinfo command is no longer available, as is the case with new POWER9 firmware. The hardware structure of a POWER system is available in the Open Firmware in the form of a device tree. Hardware components such as PCI bridges, processors and PCI cards are represented as device nodes in this tree.

With the command “dev /” you can access the device nodes, starting with the root node (“/” or slash):

0 > dev /  ok
0 >

In the device tree you can navigate with the commands dev, ls and pwd similar to the Unix file system. An ls on the root node shows all available device nodes (as well as some “package nodes” which are not discussed here).

The hierarchy is visualized in the device tree by indenting the device nodes:

0 > ls 
0000020939c0: /ibm,serial
000002094ae8: /chosen
000002094d60: /packages
000002094e58:   /disassembler
...0000020af578: /cpus
0000020b5200:   /PowerPC,POWER7@0
...
0000020ba640: /memory@0
...
00000226cad0: /pci@800000020000120
00000229d750:   /pci@0
0000022a0018:     /pci@2
0000022a28e0:       /ethernet@0
0000022b4a28:       /ethernet@0,1
0000022c6b70:     /pci@4
0000022c9438:       /ethernet@0
0000022db580:       /ethernet@0,1
000002277fd8: /pci@800000020000121
0000022ed7d0:   /fibre-channel@0
0000023026e0:     /fp
000002303240:     /disk
000002304de0:     /tape
000002306270:   /fibre-channel@0,1
00000231b180:     /fp
00000231bce0:     /disk
00000231d880:     /tape
...
ok
0 >

The example output shows 2 FC ports. Both FC ports are children of the device node pci@800000020000121, which can be found directly under the root node /.

With the command “dev / pci@800000020000121” we first navigate to this node and then display the child or child nodes using “ls“:

0 > dev /pci@800000020000121  ok
0 > ls
0000022ed7d0: /fibre-channel@0
0000023026e0:   /fp
000002303240:   /disk
000002304de0:   /tape
000002306270: /fibre-channel@0,1
00000231b180:   /fp
00000231bce0:   /disk
00000231d880:   /tape
ok
0 >

We next move into the device node of the first FC port fiber-channel@0.

With the command “pwd” we check briefly the position in the device tree and then use “ls” to look at the available subnodes:

0 > dev fibre-channel@0  ok
0 > pwd /pci@800000020000121/fibre-channel@0 ok
0 > ls
0000023026e0: /fp
000002303240: /disk
000002304de0: /tape
ok
0 >

Each device node has a number of properties, which depend on the type of the underlying hardware component.

The properties of a device node can be displayed with the command “.properties” (the command name begins with a “.“):

0 > .properties
ibm,loc-code            U5802.001.008C110-P1-C2-T1
vendor-id               000010df
device-id               0000f100
...
name                    fibre-channel
...
manufacturer            456d756c 657800
copyright               436f7079 72696768 74202863 29203230 30302d32 30313220 456d756c 657800
device_type             fcp
model                   10N9824
...
port-wwn                10000000 c9b12345
node-wwn                20000000 c9b12345
...
ok
0 >

In addition to the location code, the port WWN (port-wwn) and the node WWN (node-wwn) are displayed.

If you would like to know more about the structure of WWNs, please refer to the article:  Numbers: FC World Wide Names (WWNs)

Of course, you can also find out the MAC address of an ethernet port in the same way. With “dev ..” you can move up one level in the device tree, just like in a Unix file system. But you can also abbreviate and go straight to the top, which we do here in the following. Then we display all available device nodes again:

0 > dev /  ok
0 > ls 
...
00000226cad0: /pci@800000020000120
00000229d750:   /pci@0
0000022a0018:     /pci@2
0000022a28e0:       /ethernet@0
0000022b4a28:       /ethernet@0,1
0000022c6b70:     /pci@4
0000022c9438:       /ethernet@0
0000022db580:       /ethernet@0,1
...
ok
0 >

As an example, we select the device node /pci@800000020000120/pci@0/pci@2/ethernet@0.1 and again let us display the properties:

0 > dev /pci@800000020000124/pci@0/pci@2/ethernet@0,1  ok
0 > pwd /pci@800000020000124/pci@0/pci@2/ethernet@0,1 ok
0 > .properties
ibm,loc-code            U5802.001.008C110-P1-C4-T2
vendor-id               00008086
device-id               000010bc
...
name                    ethernet
...
device_type             network
...
max-frame-size          00000800
address-bits            00000030
local-mac-address       00145eea 1234
mac-address             00145eea 1234
...
0 >

The MAC address is available here by the property mac-address.

If you want to leave the device tree, you can do this with the command “device-end“:

0 > device-end  ok
0 >

We hope this article about WWPN of FC ports in Open Firmware was both helpful and informative.

LPAR-Tool in Action: Examples

The LPAR tool can administer HMCs, managed systems, LPARs and virtual-I/O-servers via the command line. The current version of the LPAR tool (currently 1.4.0.2) can be downloaded from our download page https://powercampus.de/download. A trial license, valid until October 31, is included. This article will show you some simple but useful applications of the LPAR tool.

A common question in larger environments (multiple HMCs, many managed systems) is: where is a particular LPAR? This question can easily be answered with the LPAR tool, by using the command “lpar show“:

$ lpar show lpar02
NAME    ID  SERIAL     LPAR_ENV  MS    HMCS
lpar02  39  123456789  aixlinux  ms21  hmc01,hmc02
$

In addition to the name, the LPAR-ID and the serial number, the managed system, here ms21, and the associated HMCs, here hmc01 and hmc02, are also shown. You can also specify multiple LPARs and/or wildcards:

$ lpar show lpar02 lpar01
...
$ lpar show lpar*
...
$

If no argument is given, all LPARs are listed.

 

Another question that frequently arises is the status of an LPAR or multiple LPARs. Again, this can be easily answered, this time with the command “lpar status“:

$ lpar status lpar02
NAME    LPAR_ID  LPAR_ENV  STATE    PROFILE   SYNC  RMC     PROCS  PROC_UNITS  MEM   OS_VERSION
lpar02  39       aixlinux  Running  standard  0     active  1      0.7         7168  AIX 7.2 7200-03-02-1846
$

The LPAR lpar02 is Running, the profile used is standard, the RMC connection is active and the LPAR is running AIX 7.2 (TL3 SP2). The LPAR has 1 processor core, with 0.7 processing units and 7 GB RAM. The column SYNC indicates whether the current configuration is synchronized with the profile (attribute sync_curr_profile).

Of course, several LPARs or even all LPARs can be specified here.

If you want to see what the LPAR tool does in the background: for most commands you can specify the option “-v” for verbose-only. The HMC commands will then be listed, but no changes will be made to the HMC. Here are the HMC commands that are issued for the status output:

$ lpar status -v lpar02
hmc01: lssyscfg -r lpar -m ms21
hmc01: lshwres -r mem -m ms21 --level lpar
hmc01: lshwres -r proc -m ms21 --level lpar
$

 

Next, the addition of additional RAM will be shown. We start with the status of the LPAR:

$ lpar status lpar02
NAME    LPAR_ID  LPAR_ENV  STATE    PROFILE   SYNC  RMC     PROCS  PROC_UNITS  MEM   OS_VERSION
lpar02  39       aixlinux  Running  standard  0     active  1      0.7         7168  AIX 7.2 7200-03-02-1846
$

The LPAR is running and RMC is active, so a DLPAR operation should be possible. We will first check if the maximum memory size is already in use:

$ lpar lsmem lpar02
            MEMORY         MEMORY         HUGE_PAGES 
LPAR_NAME  MODE  AME  MIN   CURR  MAX   MIN  CURR  MAX
lpar02     ded   0.0  2048  7168  8192  0    0     0
$

Currently the LPAR uses 7 GB and a maximum of 8 GB are possible. Extending the memory by 1 GB (1024 MB) should be possible. We add the memory by using the command “lpar addmem“:

$ lpar addmem lpar02 1024
$

We check the success by starting the command “lpar lsmem” again:

$ lpar lsmem lpar02
           MEMORY         MEMORY         HUGE_PAGES 
LPAR_NAME  MODE  AME  MIN   CURR  MAX   MIN  CURR  MAX
lpar02     ded   0.0  2048  8192  8192  0    0     0
$

(By the way: if the current configuration is not synchronized with the current profile, attribute sync_curr_profile, then the LPAR tool also updates the profile!)

 

Virtual adapters can be listed using “lpar lsvslot“:

$ lpar lsvslot lpar02
SLOT  REQ  ADAPTER_TYPE   STATE  DATA
0     Yes  serial/server  1      remote: (any)/any connect_status=unavailable hmc=1
1     Yes  serial/server  1      remote: (any)/any connect_status=unavailable hmc=1
2     No   eth            1      PVID=123 VLANS= ETHERNET0 XXXXXXXXXXXX
6     No   vnic           -      PVID=1234 VLANS=none XXXXXXXXXXXX failover sriov/ms21-vio1/1/3/0/2700c003/2.0/2.0/20/100.0/100.0,sriov/ms21-vio2/2/1/0/27004004/2.0/2.0/10/100.0/100.0
10    No   fc/client      1      remote: ms21-vio1(1)/47 c050760XXXXX0016,c050760XXXXX0017
20    No   fc/client      1      remote: ms21-vio2(2)/25 c050760XXXXX0018,c050760XXXXX0019
21    No   scsi/client    1      remote: ms21-vio2(2)/20
$

The example shows virtual FC and SCSI adapters as well as a vNIC adapter in slot 6.

 

Finally, we’ll show how to start a console for an LPAR:

$ lpar console lpar02

Open in progress 

 Open Completed.

…

AIX Version 7

Copyright IBM Corporation, 1982, 2018.

Console login:

…

The console can be terminated with “~.“.

 

Of course, the LPAR tool can do much more.

To be continued.